Biochemistry (Moscow)

, Volume 79, Issue 12, pp 1412–1422 | Cite as

Mouse lymphomyeloid cells can function with significantly decreased expression levels of cytochrome c

  • E. S. Shilov
  • I. V. Kislyakov
  • E. A. Gorshkova
  • R. V. Zvartsev
  • M. S. Drutskaya
  • I. A. Mufazalov
  • V. P. Skulachev
  • S. A. Nedospasov
Article

Abstract

Cytochrome c is an indispensable electron carrier in the mitochondrial respiratory chain and also an important mediator of the internal pathway triggering apoptosis. Mice with a complete deficiency of the Cycs gene encoding the somatic cytochrome c die during the embryogenesis. Using the technology of LoxP-cre-dependent tissue-specific recombination, we obtained some mouse strains with significantly reduced expression of cytochrome c in certain cell types (“conditional genetic knockdown”). This knockdown was achieved by abrogation of the normal splicing of the Cycs locus pre-mRNA due to an additional acceptor site inside the stop-cassette neor. Previously, we observed embryonic lethality in homozygous mice with the same knockdown of cytochrome c in all cells of the organism. In the present work we studied two novel mouse strains with conditional knockdown of the Cycs gene in T lymphocytes and macrophages. Somewhat surprisingly, the mice of these two strains under normal conditions were not phenotypically different from the wild-type mice, either on the whole organism level or on the level of activity of individual target cells. Thus, the amount of cytochrome c in lymphomyeloid cells does not affect their development and normal functioning.

Key words

cytochrome c genetic knockdown T lymphocytes macrophages cre recombinase splicing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skulachev, V. P. (1998) Cytochrome c in the apoptotic and antioxidant cascades, FEBS Lett., 423, 275–280.PubMedCrossRefGoogle Scholar
  2. 2.
    Hake, L. E., Kuemmerle, N., Hecht, N. B., Kozak, C. A., Zou, H., Li, Y., Liu, X., and Wang, X. (1994) The genes encoding the somatic and testis-specific isotypes of the mouse cytochrome c genes map to paralogous regions of chromosomes 6 and 2, Genomics, 20, 503–505.PubMedCrossRefGoogle Scholar
  3. 3.
    Narisawa, S., Hecht, N. B., Goldberg, E., Boatright, K. M., Reed, J. C., and Millan, J. L. (2002) Testis-specific cytochrome c-null mice produce functional sperm but undergo early testicular atrophy, Mol. Cell Biol., 22, 5554–5562.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Li, K., Li, Y., Shelton, J. M., Richardson, J. A., Spencer, E., Chen, Z. J., Wang, X., and Williams, R. S. (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis, Cell, 101, 389–399.PubMedCrossRefGoogle Scholar
  5. 5.
    King, M. P., and Attardi, G. (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation, Science, 246, 500–503.PubMedCrossRefGoogle Scholar
  6. 6.
    Vempati, U. D., Han, X., and Moraes, C. T. (2009) Lack of cytochrome c in mouse fibroblasts disrupts assembly/stability of respiratory complexes I and IV, J. Biol. Chem., 284, 4383–4391.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Mansfield, K. D., Guzy, R. D., Pan, Y., Young, R. M., Cash, T. P., Schumacker, P. T., and Simon, M. C. (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation, Cell. Metab., 6, 393–399.CrossRefGoogle Scholar
  8. 8.
    Sherman, F., Stewart, J. W., Jackson, M., Gilmore, R. A., and Parker, J. H. (1974) Mutants of yeast defective in iso-1-cytochrome c, Genetics, 77, 255–284.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Mufazalov, I. A., Kruglov, A. A., Efimov, G. A., Drutskaya, M. S., Penkov, D. N., Kuprash, D. V., and Nedospasov, S. A. (2011) Effects of mutation in the cytochrome c gene and of inhibitors of reactive oxygen species on the accelerated involution of the thymus in mice heterogeneous by the TNF/LT, Ros. Immunolog. Zh., 2, 112–120.Google Scholar
  10. 10.
    Mufazalov, I. A., Penkov, D. N., Chernyak, B. V., Pletyushkina, O. Yu., Vysokikh, M. Yu., Chertkova, R. V., Kirpichnikov, M. P., Dolgikh, D. A., Kuprash, D. V., Skulachev, V. P., and Nedospasov, S. A. (2009) Embryonal mouse fibroblasts with the K72W mutation in the gene of somatic cytochrome c: obtaining and characteristics, Mol. Biol. (Moscow), 43, 648–656.CrossRefGoogle Scholar
  11. 11.
    Boltz-Nitulescu, G., Wiltschke, C., Holzinger, C., Fellinger, A., Scheiner, O., Gessl, A., and Forster, O. (1987) Differentiation of rat bone marrow cells into macrophages under the influence of mouse L929 cell supernatant, J. Leukoc. Biol., 41, 83–91.PubMedGoogle Scholar
  12. 12.
    Chomczynski, P., and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction, Anal. Biochem., 162, 156–159.PubMedCrossRefGoogle Scholar
  13. 13.
    Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method, Methods, 25, 402–408.PubMedCrossRefGoogle Scholar
  14. 14.
    Shilov, E. S., Mufazalov, I. A., Shebzukhov, Yu. V., Zvartsev, R. V., Drutskaya, M. S., and Nedospasov, S. A. (2013) Conditional genetic knockdown of the mouse somatic cytochrome c in lymphomyelid cells, Ros. Immunol. Zh., 4, 361–371.Google Scholar
  15. 15.
    Kulikov, A. V., Shilov, E. S., Mufazalov, I. A., Gogvadze, V., Nedospasov, S. A., and Zhivotovsky, B. (2012) Cytochrome c: the Achilles’ heel in apoptosis, Cell. Mol. Life Sci., 69, 1787–1797.PubMedCrossRefGoogle Scholar
  16. 16.
    Imao, T., and Nagata, S. (2013) Apaf-1- and caspase-8-independent apoptosis, Cell Death Differ., 20, 343–352.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Dudkina, N. V., Kudryashev, M., Stahlberg, H., and Boekema, E. J. (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography, Proc. Natl. Acad. Sci. USA, 108, 15196–15200.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Tuominen, E. K., Wallace, C. J., and Kinnunen, P. K. (2002) Phospholipid-cytochrome c interaction: evidence for the extended lipid anchorage, J. Biol. Chem., 277, 8822–8826.PubMedCrossRefGoogle Scholar
  19. 19.
    Sinibaldi, F., Howes, B. D., Piro, M. C., Polticelli, F., Bombelli, C., Ferri. T., Coletta, M., Smulevich, G., and Santucci, R. (2010) Extended cardiolipin anchorage to cytochrome c: a model for protein-mitochondrial membrane binding, J. Biol. Inorg. Chem., 15, 689–700.PubMedCrossRefGoogle Scholar
  20. 20.
    Lapuente-Brun, E., Moreno-Loshuertos, R., Acin-Perez, R., Latorre-Pellicer, A., Colas, C., Balsa, E., Perales-Clemente, E., Quiros, P., Calvo, E., Rodriguez-Hernandez, M. A., Navas, P., Cruz, R., Carracedo, A., Lopez-Otin, C., Perez-Martos, A., Fernandez-Silva, P., Fernandez-Vizarra, E., and Enriquez, J. A. (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain, Science, 340, 1567–1570.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. S. Shilov
    • 1
  • I. V. Kislyakov
    • 1
  • E. A. Gorshkova
    • 1
  • R. V. Zvartsev
    • 2
  • M. S. Drutskaya
    • 2
  • I. A. Mufazalov
    • 2
  • V. P. Skulachev
    • 2
  • S. A. Nedospasov
    • 3
  1. 1.Biological FacultyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations