Biochemistry (Moscow)

, Volume 79, Issue 12, pp 1391–1396 | Cite as

Highly specific hybrid protein DARPin-mCherry for fluorescent visualization of cells overexpressing tumor marker HER2/neu

  • K. E. MironovaEmail author
  • O. N. Chernykh
  • A. V. Ryabova
  • O. A. Stremovskiy
  • G. M. Proshkina
  • S. M. Deyev


Here we propose a simple and reliable approach for detection of the tumor marker HER2/neu using the targeting fluorescent hybrid protein DARPin-mCherry. As a targeting module, we used DARPin9-29, which is a member of a novel class of non-immunoglobulin targeting proteins that can highly selectively recognize the extracellular domain of the epidermal growth factor receptor HER2/neu. The red fluorescent protein mCherry was used as the detecting module. The hybrid protein DARPin-mCherry was prepared with high yield in a bacterial expression system and purified in one step by affinity chromatography. The purified protein is not prone to aggregation. The specificity of DARPin-mCherry binding with the HER2/neu tumor marker was demonstrated using confocal microscopy, flow cytofluorimetry, and surface plasmon resonance. The dissociation constant of the DARPin-mCherry protein complex with the HER2/neu receptor determined by surface plasmon resonance was calculated to be 4.5 nM. These characteristics of the hybrid protein DARPin-mCherry suggest it as a promising agent for immunofluorescent assay and an attractive alternative to antibodies and their fragments labeled with fluorescent dyes that are now used for this purpose.

Key words

DARPin mCherry tumor marker HER2/neu 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slamon, D. J., Godolphin, W., Jones, L. A., Holt, J. A., Wong, S. G., Keith, D. E., Levin, W. J., Stuart, S. G., Udove, J., Ullrich, A., and Press, M. (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer, Science, 244, 707–712.PubMedCrossRefGoogle Scholar
  2. 2.
    Polyanovski, O. L., Lebedenko, E. N., and Deyev, S. M. (2012) ERBB-oncogenes as targets for monoclonal antibodies, Biochemistry (Moscow), 77, 227–245.CrossRefGoogle Scholar
  3. 3.
    Citri, A., Gan, J., Mosesson, Y., Vereb, G., Szollosi, J., and Yarden, Y. (2004) Hsp90 restrains ErbB-2/HER2 signaling by limiting heterodimer formation, EMBO Rep., 5, 1165–1170.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Sorkin, A., and Goh, L. K. (2009) Endocytosis and intracellular trafficking of ErbBs, Exp. Cell Res., 315, 683–696.PubMedCrossRefGoogle Scholar
  5. 5.
    Yarden, Y., and Sliwkowski, M. X. (2001) Untangling the ErbB signaling network, Nature Rev. Mol. Cell Biol., 2, 127–137.CrossRefGoogle Scholar
  6. 6.
    Arteaga, C. L., and Engelman, J. A. (2014) ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics, Cancer Cell, 25, 282–303.PubMedCrossRefGoogle Scholar
  7. 7.
    Steiner, D., Forrer, P., and Pluckthun, A. (2008) Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display, J. Mol. Biol., 382, 1211–1227.PubMedCrossRefGoogle Scholar
  8. 8.
    Binz, H. K., Stumpp, M. T., Forrer, P., Amstutz, P., and Pluckthun, A. (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins, J. Mol. Biol., 332, 489–503.PubMedCrossRefGoogle Scholar
  9. 9.
    Tamaskovic, R., Simon, M., Stefan, N., Schwill, M., and Pluckthun, A. (2012) Designed ankyrin repeat proteins (DARPins) from research to therapy, Methods Enzymol., 503, 101–134.PubMedCrossRefGoogle Scholar
  10. 10.
    Kobe, B., and Kajava, A. (2000) When protein folding is simplified to protein coiling: the continuum of solenoid protein structures, Trends Biochem. Sci., 25, 509–515.PubMedCrossRefGoogle Scholar
  11. 11.
    Munch, R. C., Muhlebach, M. D., Schaser, T., Kneissl, S., Jost, C., Pluckthun, A., Cichutek, K., and Buchholz, C. J. (2011) DARPins: an efficient targeting domain for lentiviral vectors, Mol. Ther., 19, 686–693.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Borovjagin, A. V., McNally, L. R., Wang, M., Curiel, D. T., MacDougall, M. J., and Zinn, K. R. (2010) Noninvasive monitoring of mRFP1- and mCherry-labeled oncolytic adenoviruses in an orthotopic breast cancer model by spectral imaging, Mol. Imaging, 9, 59–75.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein, Nature Biotechnol., 22, 1567–1572.CrossRefGoogle Scholar
  14. 14.
    Chudakov, D. M., Matz, M. V., Lukyanov, S. A., and Lukyanov, K. A. (2010) Fluorescent proteins and their applications in imaging living cells and tissues, Physiol. Rev., 90, 1103–1163.PubMedCrossRefGoogle Scholar
  15. 15.
    Jost, C., Schilling, J., Tamaskovic, R., Schwill, M., Honegger, A., and Pluckthun, A. (2013) Structural basis for eliciting a cytotoxic effect in HER2-overexpressing cancer cells via binding to the extracellular domain of HER2, Structure, 21, 1979–1991.PubMedCrossRefGoogle Scholar
  16. 16.
    Deyev, S. M., and Lebedenko, E. N. (2009) Modern technologies for creation of artificial antibodies for clinical application, Acta Naturae, 1, 32–50.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Boersma, Y. L., Chao, G., Steiner, D., Wittrup, K. D., and Pluckthun, A. (2011) Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling, J. Biol. Chem., 286, 41273–41285.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Souied, E. H., Devin, F., Mauget-Faysse, M., Kolar, P., Wolf-Schnurrbusch, U., Framme, C., Gaucher, D., Querques, G., Stumpp, M. T., and Wolf, S. (2014) Treatment of exudative age-related macular degeneration with a designed ankyrin repeat protein that binds vascular endothelial growth factor: a phase I/II study, Am. J. Ophthalmol., DOI: 10.1016/j.ajo.2014.05.037.Google Scholar
  19. 19.
    Piatkevich, K. D., and Verkhusha, V. V. (2011) Guide to red fluorescent proteins and biosensors for flow cytometry, Methods Cell Biol., 102, 431–461.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • K. E. Mironova
    • 1
    • 2
    Email author
  • O. N. Chernykh
    • 1
    • 3
  • A. V. Ryabova
    • 4
  • O. A. Stremovskiy
    • 1
  • G. M. Proshkina
    • 1
  • S. M. Deyev
    • 1
    • 2
  1. 1.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia
  3. 3.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  4. 4.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations