Biochemistry (Moscow)

, Volume 79, Issue 12, pp 1363–1370 | Cite as

Analysis of results of acute graft-versus-host disease prophylaxis with donor multipotent mesenchymal stromal cells in patients with hemoblastoses after allogeneic bone marrow transplantation

  • I. N. Shipounova
  • N. A. Petinati
  • A. E. Bigildeev
  • E. A. Zezina
  • N. I. Drize
  • L. A. Kuzmina
  • E. N. Parovichnikova
  • V. G. Savchenko
Article

Abstract

Allogeneic bone marrow transplantation (allo-BMT) is currently the only way to cure many hematoproliferative disorders. However, allo-BMT use is limited by severe complications, the foremost being graft-versus-host disease (GVHD). Due to the lack of efficiency of the existing methods of GVHD prophylaxis, new methods are being actively explored, including the use of donors’ multipotent mesenchymal stromal cells (MMSC). In this work, we analyzed the results of acute GVHD (aGVHD) prophylaxis by means of MMSC injections after allo-BMT in patients with hematological malignancies. The study included 77 patients. They were randomized into two groups — those receiving standard prophylaxis of aGVHD and those who were additionally infused with MMSC derived from the bone marrow of hematopoietic stem cell donors. We found that the infusion of MMSC halves the incidence of aGVHD and increases the overall survival of patients. Four of 39 MMSC samples were ineffective for preventing aGVHD. Analysis of individual donor characteristics (gender, age, body mass index) and the MMSC properties of these donors (growth parameters, level of expression of 30 genes involved in proliferation, differentiation, and immunomodulation) revealed no significant difference between the MMSC that were effective or ineffective for preventing aGVHD. We used multiple logistic regression to establish a combination of features that characterize the most suitable MMSC samples for the prevention of aGVHD. A model predicting MMSC sample success for aGVHD prophylaxis was constructed. Significant model parameters were increased relative expression of the FGFR1 gene in combination with reduced expression levels of the PPARG and IGF1 genes. Depending on the chosen margin for probability of successful application of MMSC, this model correctly predicts the outcome of the use of MMSC in 82–94% of cases. The proposed model of prospective evaluation of the effectiveness of MMSC samples will enable prevention of the development of aGVHD in the maximal number of patients.

Key words

multipotent mesenchymal stromal cells (MMSC) allogeneic bone marrow transplantation (allo-BMT) acute graft-versus-host disease (aGVHD) relative gene expression level multiple logistic regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appelbaum, F. R. (2001) Haematopoietic cell transplantation as immunotherapy, Nature, 411, 385–389.PubMedCrossRefGoogle Scholar
  2. 2.
    Tabbara, I. A., Zimmerman, K., Morgan, C., and Nahleh, Z. (2002) Allogeneic hematopoietic stem cell transplantation: complications and results, Arch. Intern. Med., 162, 1558–1566.PubMedCrossRefGoogle Scholar
  3. 3.
    Billingham, R. E. (1966–1967) The biology of graft-versushost reactions, Harvey Lect., 62, 21–78.PubMedGoogle Scholar
  4. 4.
    Welniak, L. A., Blazar, B. R., and Murphy, W. J. (2007) Immunobiology of allogeneic hematopoietic stem cell transplantation, Annu. Rev. Immunol., 25, 139–170.PubMedCrossRefGoogle Scholar
  5. 5.
    Appelbaum, F. R. (2003) The current status of hematopoietic cell transplantation, Annu. Rev. Med., 54, 491–512.PubMedCrossRefGoogle Scholar
  6. 6.
    Ferrara, J. L. M., Levine, J. E., Reddy, P., and Holler, E. (2009) Graft-versus-host disease, Lancet, 373, 1550–1561.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Filipovich, A. H., Weisdorf, D., Pavletic, S., Socie, G., Wingard, J. R., Lee, S. J., Martin, P., Chien, J., Przepiorka, D., Couriel, D., Cowen, E. W., Dinndorf, P., Farrell, A., Hartzman, R., Henslee-Downey, J., Jacobsohn, D., McDonald, G., Mittleman, B., Rizzo, J. D., Robinson, M., Schubert, M., Schultz, K., Shulman, H., Turner, M., Vogelsang, G., and Flowers, M. E. (2005) National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report, Biol. Blood Marrow Transplant., 11, 945–956.PubMedCrossRefGoogle Scholar
  8. 8.
    Ferrara, J. L., Levy, R., and Chao, N. J. (1999) Pathophysiological mechanisms of acute graft-vs.-host disease, Biol. Blood Marrow Transplant., 5, 347–356.PubMedCrossRefGoogle Scholar
  9. 9.
    Visentainer, J. E. L., Lieber, S. R., Persoli, L. B. L., Vigorito, A. C., Aranha, F. J. P., de Brito Eid, K. A., Oliveira, G. B., Miranda, E. C., and de Souza, C. A. (2003) Serum cytokine levels and acute graft-versus-host disease after HLA-identical hematopoietic stem cell transplantation, Exp. Hematol., 31, 1044–1050.PubMedCrossRefGoogle Scholar
  10. 10.
    Xun, C. Q., Thompson, J. S., Jennings, C. D., Brown, S. A., and Widmer, M. B. (1994) Effect of total body irradiation, busulfan-cyclophosphamide, or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H-2-incompatible transplanted SCID mice, Blood, 83, 2360–2367.PubMedGoogle Scholar
  11. 11.
    Leeuwenberg, J. F., Van Damme, J., Meager, T., Jeunhomme, T. M., and Buurman, W. A. (1988) Effects of tumor necrosis factor on the interferon-gamma-induced major histocompatibility complex class II antigen expression by human endothelial cells, Eur. J. Immunol., 18, 1469–1472.PubMedCrossRefGoogle Scholar
  12. 12.
    Norton, J., and Sloane, J. P. (1991) ICAM-1 expression on epidermal keratinocytes in cutaneous graft-versus-host disease, Transplantation, 51, 1203–1206.PubMedCrossRefGoogle Scholar
  13. 13.
    Chao, N. J. (1997) Graft-versus-host disease: the viewpoint from the donor T cell, Biol. Blood Marrow Transplant., 3, 1–10.PubMedGoogle Scholar
  14. 14.
    Taylor, P. A., Noelle, R. J., and Blazar, B. R. (2001) CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade, J. Exp. Med., 193, 1311–1318.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Deans, R. J., and Moseley, A. B. (2000) Mesenchymal stem cells: biology and potential clinical uses, Exp. Hematol., 28, 875–884.PubMedCrossRefGoogle Scholar
  16. 16.
    Colter, D. C., Sekiya, I., and Prockop, D. J. (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells, Proc. Natl. Acad. Sci. USA, 98, 7841–7845.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Majumdar, M. K., Thiede, M. A., Haynesworth, S. E., Bruder, S. P., and Gerson, S. L. (2000) Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages, J. Hematother. Stem Cell Res., 9, 841–848.PubMedCrossRefGoogle Scholar
  18. 18.
    Jones, B. J., and McTaggart, S. J. (2008) Immunosuppression by mesenchymal stromal cells: from culture to clinic, Exp. Hematol., 36, 733–741.PubMedCrossRefGoogle Scholar
  19. 19.
    Aggarwal, S., and Pittenger, M. F. (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses, Blood, 105, 1815–1822.PubMedCrossRefGoogle Scholar
  20. 20.
    Le Blanc, K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M., and Ringden, O. (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells, Lancet, 363, 1439–1441.PubMedCrossRefGoogle Scholar
  21. 21.
    Samuelsson, H., Ringden, O., Lonnies, H., and Le Blanc, K. (2009) Optimizing in vitro conditions for immunomodulation and expansion of mesenchymal stromal cells, Cytotherapy, 11, 129–136.PubMedCrossRefGoogle Scholar
  22. 22.
    Prockop, D. J., Brenner, M., Fibbe, W. E., Horwitz, E., Le Blanc, K., Phinney, D. G., Simmons, P. J., Sensebe, L., and Keating, A. (2010) Defining the risks of mesenchymal stromal cell therapy, Cytotherapy, 12, 576–578.PubMedCrossRefGoogle Scholar
  23. 23.
    Ringden, O., Uzunel, M., Rasmusson, I., Remberger, M., Sundberg, B., Lonnies, H., Marschall, H. U., Dlugosz, A., Szakos, A., Hassan, Z., Omazic, B., Aschan, J., Barkholt, L., and Le Blanc, K. (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease, Transplantation, 81, 1390–1397.PubMedCrossRefGoogle Scholar
  24. 24.
    Tisato, V., Naresh, K., Girdlestone, J., Navarrete, C., and Dazzi, F. (2007) Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versushost disease, Leukemia, 21, 1992–1999.PubMedCrossRefGoogle Scholar
  25. 25.
    Kuzmina, L. A., Petinati, N. A., Parovichnikova, E. N., Lubimova, L. S., Gribanova, E. O., Gaponova, T. V., Shipounova, I. N., Zhironkina, O. A., Bigildeev, A. E., Svinareva, D. A., Drize, N. J., and Savchenko, V. G. (2012) Multipotent mesenchymal stromal cells for the prophylaxis of acute graft-versus-host disease — a phase II study, Stem Cells Int., 2012; DOI: 10.1155/2012/968213.Google Scholar
  26. 26.
    Glucksberg, H., Storb, R., Fefer, A., Buckner, C. D., Neiman, P. E., Clift, R. A., Lerner, K. G., and Thomas, E. D. (1974) Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors, Transplantation, 18, 295–304.PubMedCrossRefGoogle Scholar
  27. 27.
    Lange, C., Cakiroglu, F., Spiess, A., Cappallo-Obermann, H., Dierlamm, J., and Zander, A. R. (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine, J. Cell Physiol., 213, 18–26.PubMedCrossRefGoogle Scholar
  28. 28.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. J., and Horwitz, E. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, 8, 315–317.PubMedCrossRefGoogle Scholar
  29. 29.
    Fong, T. A., and Mosmann, T. R. (1990) Alloreactive murine CD8+ T cell clones secrete the Th1 pattern of cytokines, J. Immunol., 144, 1744–1752.PubMedGoogle Scholar
  30. 30.
    Svinareva, D. A., Shipunova, I. N., Ol’shanskaia, I. V., Momotiuk, K. S., Drize, N. I., and Savchenko, V. G. (2010) The basic properties of mesenchymal stromal cells from the donor bone marrow: superficial markers, Ter. Arkhiv, 82, 52–56.Google Scholar
  31. 31.
    Chomczynski, P., and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal. Biochem., 162, 156–159.PubMedCrossRefGoogle Scholar
  32. 32.
    Schmittgen, T. D., and Livak, K. J. (2008) Analyzing real-time PCR data by the comparative CT method, Nat. Protoc., 3, 1101–1108.PubMedCrossRefGoogle Scholar
  33. 33.
    Ringden, O., and Le Blanc, K. (2011) Mesenchymal stem cells for treatment of acute and chronic graft-versus-host disease, tissue toxicity and hemorrhages, Best Pract. Res. Clin. Haematol., 24, 65–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Appelbaum, F. R. (2003) The current status of hematopoietic cell transplantation, Annu. Rev. Med., 54, 491–512.PubMedCrossRefGoogle Scholar
  35. 35.
    Ferrara, J. L. M., Levine, J. E., Reddy, P., and Holler, E. (2009) Graft-versus-host disease, Lancet, 373, 1550–1561.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Mayack, S. R., Shadrach, J. L., Kim, F. S., and Wagers, A. J. (2010) Systemic signals regulate ageing and rejuvenation of blood stem cell niches, Nature, 463, 495–500.PubMedCrossRefGoogle Scholar
  37. 37.
    Bigildeev, A. E., Zhironkina, O. A., Shipounova, I. N., Sats, N. V., Kotyashova, S. Y., and Drize, N. I. (2012) Clonal composition of human multipotent mesenchymal stromal cells, Exp. Hematol., 40, 847–856.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. N. Shipounova
    • 1
  • N. A. Petinati
    • 1
  • A. E. Bigildeev
    • 1
  • E. A. Zezina
    • 1
    • 2
  • N. I. Drize
    • 1
  • L. A. Kuzmina
    • 1
  • E. N. Parovichnikova
    • 1
  • V. G. Savchenko
    • 1
  1. 1.Hematological Scientific CenterMinistry of Health of Russian FederationMoscowRussia
  2. 2.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations