Biochemistry (Moscow)

, Volume 79, Issue 12, pp 1349–1357 | Cite as

Experimental models of arthritis in which pathogenesis is dependent on TNF expression

  • M. S. Drutskaya
  • G. A. Efimov
  • R. V. Zvartsev
  • A. A. Chashchina
  • D. M. Chudakov
  • S. V. Tillib
  • A. A. Kruglov
  • S. A. Nedospasov
Article

Abstract

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease characterized by joint damage as well as systemic manifestations. The exact cause of RA is not known. Both genetic and environmental factors are believed to contribute to the development of this disease. Increased expression of tumor necrosis factor (TNF) has been implicated in the pathogenesis of RA. Currently, the use of anti-TNF drugs is one of the most effective strategies for the treatment of RA, although therapeutic response is not observed in all patients. Furthermore, due to non-redundant protective functions of TNF, systemic anti-TNF therapy is often associated with unwanted side effects such as increased frequency of infectious diseases. Development of experimental models of arthritis in mice is necessary for studies on the mechanisms of pathogenesis of this disease and can be useful for comparative evaluation of various anti-TNF drugs. Here we provide an overview of the field and present our own data with two experimental models of autoimmune arthritis — collagen-induced arthritis and antibody-induced arthritis in C57Bl/6 and BALB/c mice, as well as in tnf-humanized mice generated on C57Bl/6 back-ground. We show that TNF-deficient mice are resistant to the development of collagen-induced arthritis, and the use of anti-TNF therapy significantly reduces the disease symptoms. We also generated and evaluated a fluorescent detector of TNF overexpression in vivo. Overall, we have developed an experimental platform for studying the mechanisms of action of existing and newly developed anti-TNF drugs for the treatment of rheumatoid arthritis.

Key words

rheumatoid arthritis tumor necrosis factor anti-cytokine therapy autoimmune diseases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kollias, G., Douni, E., Kassiotis, G., and Kontoyiannis, D. (1999) The function of tumor necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease, Ann. Rheum. Dis., 58,Suppl. 1, 132–139.Google Scholar
  2. 2.
    Probert, L., Keffer, J., Corbella, P., Cazlaris, H., Patsavoudi, E., Stephens, S., Kaslaris, E., Kioussis, D., and Kollias, G. (1993) Wasting, ischemia, and lymphoid abnormalities in mice expressing T cell-targeted human tumor necrosis factor transgenes, J. Immunol., 151, 1894–1906.PubMedGoogle Scholar
  3. 3.
    Probert, L., Plows, D., Kontogeorgos, G., and Kollias, G. (1995) The type I interleukin-1 receptor acts in series with tumor necrosis factor (TNF) to induce arthritis in TNF-transgenic mice, Eur. J. Immunol., 25, 1794–1797.PubMedCrossRefGoogle Scholar
  4. 4.
    Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F., and Kollias, G. (1999) Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies, Immunity, 10, 387–398.PubMedCrossRefGoogle Scholar
  5. 5.
    Kruglov, A. A., Kuchmiy, A., Grivennikov, S. I., Tumanov, A. V., Kuprash, D. V., and Nedospasov, S. A. (2008) Physiological functions of tumor necrosis factor and the consequences of its pathologic overexpression or blockade: mouse models, Cytokine Growth Factor Rev., 19, 231–244.PubMedCrossRefGoogle Scholar
  6. 6.
    Silva, L. C., Ortigosa, L. C., and Benard, G. (2010) Anti-TNF-alpha agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls, Immunotherapy, 2, 817–833.PubMedCrossRefGoogle Scholar
  7. 7.
    Ehrenstein, M. R., Evans, J. G., Singh, A., Moore, S., Warnes, G., Isenberg, D. A., and Mauri, C. (2004) Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy, J. Exp. Med., 200, 277–285.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Hess, A., Axmann, R., Rech, J., Finzel, S., Heindl, C., Kreitz, S., Sergeeva, M., Saake, M., Garcia, M., Kollias, G., Straub, R. H., Sporns, O., Doerfler, A., Brune, K., and Schett, G. (2011) Blockade of TNF-alpha rapidly inhibits pain responses in the central nervous system, Proc. Natl. Acad. Sci. USA, 108, 3731–3736.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bean, A. G., Roach, D. R., Briscoe, H., France, M. P., Korner, H., Sedgwick, J. D., and Britton, W. J. (1999) Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin, J. Immunol., 162, 3504–3511.PubMedGoogle Scholar
  10. 10.
    Jacobs, M., Togbe, D., Fremond, C., Samarina, A., Allie, N., Botha, T., Carlos, D., Parida, S. K., Grivennikov, S., Nedospasov, S., Monteiro, A., Le Bert, M., Quesniaux, V., and Ryffel, B. (2007) Tumor necrosis factor is critical to control tuberculosis infection, Microbes Infect., 9, 623–628.PubMedCrossRefGoogle Scholar
  11. 11.
    Kuprash, D. V., Tumanov, A. V., Liepinsh, D. J., Koroleva, E. P., Drutskaya, M. S., Kruglov, A. A., Shakhov, A. N., Southon, E., Murphy, W. J., Tessarollo, L., Grivennikov, S. I., and Nedospasov, S. A. (2005) Novel tumor necrosis factor-knockout mice that lack Peyer’s patches, Eur. J. Immunol., 35, 1592–1600.PubMedCrossRefGoogle Scholar
  12. 12.
    Efimov, G. A., Khlopchatnikova, Z. V., Sazikin, A. Y., Drutskaya, M. S., Kruglov, A. A., Shilov, E. S., Kuchmiy, A. A., Nedospasov, S. A., and Tillib, S. B. (2012) Isolation and characteristics of a new recombinant single domain anti-body that specifically binds to human TNF, Russ. J. Immunol., 6, 337–345.Google Scholar
  13. 13.
    Shcherbo, D., Merzlyak, E. M., Chepurnykh, T. V., Fradkov, A. F., Ermakova, G. V., Solovieva, E. A., Lukyanov, K. A., Bogdanova, E. A., Zaraisky, A. G., Lukyanov, S., and Chudakov, D. M. (2007) Bright far-red fluorescent protein for whole-body imaging, Nat. Methods, 4, 741–746.PubMedCrossRefGoogle Scholar
  14. 13a.
    Kuchmiy, A. A., Efimov, G. A., and Nedospasov, S. A. (2012) Methods for in vivo molecular imaging, Biochemistry (Moscow), 77, 1339–1353.CrossRefGoogle Scholar
  15. 14.
    Bevaart, L., Vervoordeldonk, M. J., and Tak, P. P. (2010) Collagen-induced arthritis in mice, Methods Mol. Biol., 602, 181–192.PubMedCrossRefGoogle Scholar
  16. 15.
    Holmdahl, R., Jansson, L., Andersson, M., and Jonsson, R. (1992) Genetic, hormonal and behavioral influence on spontaneously developing arthritis in normal mice, Clin. Exp. Immunol., 88, 467–472.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 16.
    Brand, D. D., Latham, K. A., and Rosloniec, E. F. (2007) Collagen-induced arthritis, Nat. Protoc., 2, 1269–1275.PubMedCrossRefGoogle Scholar
  18. 17.
    Campbell, I. K., Hamilton, J. A., and Wicks, I. P. (2000) Collagen-induced arthritis in C57BL/6 (H-2b) mice: new insights into an important disease model of rheumatoid arthritis, Eur. J. Immunol., 30, 1568–1575.PubMedCrossRefGoogle Scholar
  19. 18.
    Londei, M., Savill, C. M., Verhoef, A., Brennan, F., Leech, Z. A., Duance, V., Maini, R. N., and Feldmann, M. (1989) Persistence of collagen type II-specific T-cell clones in the synovial membrane of a patient with rheumatoid arthritis, Proc. Natl. Acad. Sci. USA, 86, 636–640.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 19.
    Kim, H. Y., Kim, W. U., Cho, M. L., Lee, S. K., Youn, J., Kim, S. I., Yoo, W. H., Park, J. H., Min, J. K., Lee, S. H., Park, S. H., and Cho, C. S. (1999) Enhanced T cell proliferative response to type II collagen and synthetic peptide CII (255–274) in patients with rheumatoid arthritis, Arthritis Rheum., 42, 2085–2093.PubMedCrossRefGoogle Scholar
  21. 20.
    Terato, K., Shimozuru, Y., Katayama, K., Takemitsu, Y., Yamashita, I., Miyatsu, M., Fujii, K., Sagara, M., Kobayashi, S., Goto, M., Nishioka, K., Miyasaka, N., and Nagai, Y. (1990) Specificity of antibodies to type II collagen in rheumatoid arthritis, Arthritis Rheum., 33, 1493–1500.PubMedCrossRefGoogle Scholar
  22. 21.
    Kim, W. U., Yoo, W. H., Park, W., Kang, Y. M., Kim, S. I., Park, J. H., Lee, S. S., Joo, Y. S., Min, J. K., Hong, Y. S., Lee, S. H., Park, S. H., Cho, C. S., and Kim, H. Y. (2000) IgG antibodies to type II collagen reflect inflammatory activity in patients with rheumatoid arthritis, J. Rheumatol., 27, 575–581.PubMedGoogle Scholar
  23. 22.
    Watson, W. C., Tooms, R. E., Carnesale, P. G., and Dutkowsky, J. P. (1994) A case of germinal center formation by CD45RO T and CD20 B lymphocytes in rheumatoid arthritic subchondral bone: proposal for a two-compartment model of immune-mediated disease with implications for immunotherapeutic strategies, Clin. Immunol. Immunopathol., 73, 27–37.PubMedCrossRefGoogle Scholar
  24. 23.
    Edwards, J. C., and Cambridge, G. (2001) Sustained improvement in rheumatoid arthritis following a protocol designed to deplete B lymphocytes, Rheumatology (Oxford), 40, 205–211.CrossRefGoogle Scholar
  25. 24.
    Edwards, J. C., Szczepanski, L., Szechinski, J., Filipowicz-Sosnowska, A., Emery, P., Close, D. R., Stevens, R. M., and Shaw, T. (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis, N. Engl. J. Med., 350, 2572–2581.PubMedCrossRefGoogle Scholar
  26. 25.
    Emery, P., Fleischmann, R., Filipowicz-Sosnowska, A., Schechtman, J., Szczepanski, L., Kavanaugh, A., Racewicz, A. J., van Vollenhoven, R. F., Li, N. F., Agarwal, S., Hessey, E. W., Shaw, T. M., and Group, D. S. (2006) The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial, Arthritis Rheum., 54, 1390–1400.PubMedCrossRefGoogle Scholar
  27. 26.
    Stuart, J. M., and Dixon, F. J. (1983) Serum transfer of collagen-induced arthritis in mice, J. Exp. Med., 158, 378–392.PubMedCrossRefGoogle Scholar
  28. 27.
    Terato, K., Hasty, K. A., Reife, R. A., Cremer, M. A., Kang, A. H., and Stuart, J. M. (1992) Induction of arthritis with monoclonal antibodies to collagen, J. Immunol., 148, 2103–2108.PubMedGoogle Scholar
  29. 28.
    Williams, R. O., Inglis, J. J., Simelyte, E., Criado, G., and Sumariwalla, P. F. (2005) Analyzing the effect of novel therapies on cytokine expression in experimental arthritis, Int. J. Exp. Pathol., 86, 267–278.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 29.
    Svensson, L., Jirholt, J., Holmdahl, R., and Jansson, L. (1998) B cell-deficient mice do not develop type II collagen-induced arthritis (CIA), Clin. Exp. Immunol., 111, 521–526.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 30.
    Nandakumar, K. S., Svensson, L., and Holmdahl, R. (2003) Collagen type II-specific monoclonal antibody-induced arthritis in mice: description of the disease and the influence of age, sex, and genes, Am. J. Pathol., 163, 1827–1837.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 31.
    Terato, K., Harper, D. S., Griffiths, M. M., Hasty, D. L., Ye, X. J., Cremer, M. A., and Seyer, J. M. (1995) Collageninduced arthritis in mice: synergistic effect of E. coli lipopolysaccharide bypasses epitope specificity in the induction of arthritis with monoclonal antibodies to type II collagen, Autoimmunity, 22, 137–147.PubMedCrossRefGoogle Scholar
  33. 32.
    Staines, N. A., and Wooley, P. H. (1994) Collagen arthritis — what can it teach us? Br. J. Rheumatol., 33, 798–807.PubMedCrossRefGoogle Scholar
  34. 33.
    Holmdahl, R., Andersson, M. E., Goldschmidt, T. J., Jansson, L., Karlsson, M., Malmstrom, V., and Mo, J. (1989) Collagen induced arthritis as an experimental model for rheumatoid arthritis. Immunogenetics, pathogenesis and autoimmunity, APMIS, 97, 575–584.PubMedCrossRefGoogle Scholar
  35. 34.
    Holmdahl, R., Mo, J. A., Jonsson, R., Karlstrom, K., and Scheynius, A. (1991) Multiple epitopes on cartilage type II collagen are accessible for antibody binding in vivo, Autoimmunity, 10, 27–34.PubMedCrossRefGoogle Scholar
  36. 35.
    Mo, J. A., Scheynius, A., Nilsson, S., and Holmdahl, R. (1994) Germline-encoded IgG antibodies bind mouse cartilage in vivo: epitope- and idiotype-specific binding and inhibition, Scand. J. Immunol., 39, 122–130.PubMedCrossRefGoogle Scholar
  37. 36.
    Abbas, A. K., Lichtman, A. H., and Pober, J. S. (1997) Immune-mediated tissue injury and disease, in Cellular and Molecular Immunology, Saunders, Philadelphia, pp. 423–438.Google Scholar
  38. 37.
    Colten, H. R. (1994) Immunology. Drawing a double-edged sword, Nature, 371, 474–475.PubMedCrossRefGoogle Scholar
  39. 38.
    Ravetch, J. V., and Clynes, R. A. (1998) Divergent roles for Fc receptors and complement in vivo, Annu. Rev. Immunol., 16, 421–432.PubMedCrossRefGoogle Scholar
  40. 39.
    Hietala, M. A., Nandakumar, K. S., Persson, L., Fahlen, S., Holmdahl, R., and Pekna, M. (2004) Complement activation by both classical and alternative pathways is critical for the effector phase of arthritis, Eur. J. Immunol., 34, 1208–1216.PubMedCrossRefGoogle Scholar
  41. 40.
    Wang, Y., Rollins, S. A., Madri, J. A., and Matis, L. A. (1995) Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease, Proc. Natl. Acad. Sci. USA, 92, 8955–8959.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 41.
    Wang, Y., Kristan, J., Hao, L., Lenkoski, C. S., Shen, Y., and Matis, L. A. (2000) A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis, J. Immunol., 164, 4340–4347.PubMedCrossRefGoogle Scholar
  43. 42.
    Grant, E. P., Picarella, D., Burwell, T., Delaney, T., Croci, A., Avitahl, N., Humbles, A. A., Gutierrez-Ramos, J. C., Briskin, M., Gerard, C., and Coyle, A. J. (2002) Essential role for the C5a receptor in regulating the effector phase of synovial infiltration and joint destruction in experimental arthritis, J. Exp. Med., 196, 1461–1471.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 43.
    Schindler, R., Gelfand, J. A., and Dinarello, C. A. (1990) Recombinant C5a stimulates transcription rather than translation of interleukin-1 (IL-1) and tumor necrosis factor: translational signal provided by lipopolysaccharide or IL-1 itself, Blood, 76, 1631–1638.PubMedGoogle Scholar
  45. 44.
    Takabayashi, T., Vannier, E., Clark, B. D., Margolis, N. H., Dinarello, C. A., Burke, J. F., and Gelfand, J. A. (1996) A new biologic role for C3a and C3a desArg: regulation of TNF-alpha and IL-1 beta synthesis, J. Immunol., 156, 3455–3460.PubMedGoogle Scholar
  46. 45.
    Choy, E. (2012) Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis, Rheumatology (Oxford), 51,Suppl. 5, 3–11.CrossRefGoogle Scholar
  47. 46.
    Smolen, J. S., and Steiner, G. (2003) Therapeutic strategies for rheumatoid arthritis, Nat. Rev. Drug Discov., 2, 473–488.PubMedCrossRefGoogle Scholar
  48. 47.
    Hochberg, M. C., Johnston, S. S., and John, A. K. (2008) The incidence and prevalence of extra-articular and systemic manifestations in a cohort of newly-diagnosed patients with rheumatoid arthritis between 1999 and 2006, Curr. Med. Res. Opin., 24, 469–480.PubMedCrossRefGoogle Scholar
  49. 48.
    Dayer, J. M., and Choy, E. (2010) Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor, Rheumatology (Oxford), 49, 15–24.CrossRefGoogle Scholar
  50. 49.
    Pollard, L., Choy, E. H., and Scott, D. L. (2005) The consequences of rheumatoid arthritis: quality of life measures in the individual patient, Clin. Exp. Rheumatol., 23, 43–52.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. S. Drutskaya
    • 1
  • G. A. Efimov
    • 1
  • R. V. Zvartsev
    • 1
  • A. A. Chashchina
    • 1
    • 2
  • D. M. Chudakov
    • 3
  • S. V. Tillib
    • 2
    • 4
  • A. A. Kruglov
    • 5
    • 6
  • S. A. Nedospasov
    • 1
    • 2
    • 5
    • 6
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Biological FacultyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  5. 5.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  6. 6.Lobachevsky State University of Nizhnii NovgorodNizhnii NovgorodRussia

Personalised recommendations