Biochemistry (Moscow)

, Volume 79, Issue 12, pp 1339–1348 | Cite as

Bacterial lipopolysaccharide activates CD57-negative human NK cells

  • L. M. Kanevskiy
  • S. A. Erokhina
  • M. A. Streltsova
  • W. G. Telford
  • A. M. Sapozhnikov
  • E. I. KovalenkoEmail author


NK cells play an important regulatory role in sepsis by induction and augmentation of proinflammatory reactions in early stages of the septic process and by suppression of immune response in later stages of inflammation. The present work was aimed at the effect of bacterial lipopolysaccharide (LPS), the main pathogenic factor of sepsis development, on human NK cells ex vivo. We show that LPS activates immature CD57-negative NK cells, which typically constitute less than half of the normal NK cell population in human peripheral blood. Under conditions of NK cell stimulation with IL-2, addition of LPS provokes an increase in IFN-γ production. However, LPS both increased and inhibited NK cell cytotoxic activity. It is important to note that the activation of NK cells on LPS addition was observed in the absence of TLR4 on the NK cell surface. These results confirm our previous data arguing for a direct interaction of LPS with NK cells and evidence an atypical mechanism of LPS-induced NK cell activation without the involvement of surface TLR4.

Key words

NK cells lipopolysaccharide IFN-γ production CD57 cytotoxicity TLR4 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yarilin, A. A. (2010) Immunology [in Russian], GEOTAR-Media, Moscow.Google Scholar
  2. 2.
    Thale, C., and Kiderlen, A. F. (2005) Sources of interferon-gamma (IFN-gamma) in early immune response to Listeria monocytogenes, Immunobiology, 210, 673–683.PubMedCrossRefGoogle Scholar
  3. 3.
    Artavanis-Tsakonas, K., and Riley, E. M. (2002) Innate immune response to malaria: rapid induction of IFN-gamma from human NK cells by live Plasmodium falciparum-infected erythrocytes, J. Immunol., 169, 2956–2963.PubMedCrossRefGoogle Scholar
  4. 4.
    Abakushina, E. V., Kuzmina, E. G., and Kovalenko, E. I. (2012) The main properties and functions of human NK cells, Immunologiya, 4, 220–225.Google Scholar
  5. 5.
    Chiche, L., Forel, J. M., Thomas, G., Farnarier, C., Vely, F., Blery, M., Papazian, L., and Vivier, E. (2011) The role of natural killer cells in sepsis, J. Biomed. Biotechnol., 2011, 986491.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Emoto, M., Miyamoto, M., Yoshizawa, I., Emoto, Y., Schaible, U. E., Kita, E., and Kaufmann, S. H. (2002) Critical role of NK cells rather than V alpha 14(+)NKT cells in lipopolysaccharide-induced lethal shock in mice, J. Immunol., 169, 1426–1432.PubMedCrossRefGoogle Scholar
  7. 7.
    Cooper, M. A., Fehniger, T. A., Fuchs, A., Colonna, M., and Caligiuri, M. A. (2004) NK cell and DC interactions, Trends Immunol., 25, 47–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Gerosa, F., Baldani-Guerra, B., Nisii, C., Marchesini, V., Carra, G., and Trinchieri, G. (2002) Reciprocal activating interaction between natural killer cells and dendritic cells, J. Exp. Med., 195, 327–333.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Goodier, M. R., and Londei, M. (2000) Lipopolysaccharide stimulates the proliferation of human CD56+CD3-NK cells: a regulatory role of monocytes and IL-10, J. Immunol., 165, 139–147.PubMedCrossRefGoogle Scholar
  10. 10.
    Godshall, C. J., Scott, M. J., Burch, P. T., Peyton, J. C., and Cheadle, W. G. (2003) Natural killer cells participate in bacterial clearance during septic peritonitis through interactions with macrophages, Shock, 19, 144–149.PubMedCrossRefGoogle Scholar
  11. 11.
    Tu, Z., Bozorgzadeh, A., Pierce, R. H., Kurtis, J., Crispe, I. N., and Orloff, M. S. (2008) TLR-dependent cross talk between human Kupffer cells and NK cells, J. Exp. Med., 205, 233–244.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Chalifour, A., Jeannin, P., Gauchat, J. F., Blaecke, A., Malissard, M., N’Guyen, T., Thieblemont, N., and Delneste, Y. (2004) Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers α-defensin production, Blood, 104, 1778–1783.PubMedCrossRefGoogle Scholar
  13. 13.
    Lauzon, N. M., Mian, F., MacKenzie, R., and Ashkar, A. A. (2006) The direct effects of Toll-like receptor ligands on human NK cell cytokine production and cytotoxicity, Cell Immunol., 241, 102–112.PubMedCrossRefGoogle Scholar
  14. 14.
    Saikh, K. U., Lee, J. S., Kissner, T. L., Dyas, B., and Ulrich, R. G. (2003) Toll-like receptor and cytokine expression patterns of CD56+ T cells are similar to natural killer cells in response to infection with Venezuelan equine encephalitis virus replicons, J. Infect. Dis., 188, 1562–1570.PubMedCrossRefGoogle Scholar
  15. 15.
    Mian, M. F., Lauzon, N. M., Andrews, D. W., Lichty, B. D., and Ashkar, A. A. (2010) FimH can directly activate human and murine natural killer cells via TLR4, Mol. Ther., 18, 1379–1388.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    O’Connor, G. M., Hart, O. M., and Gardiner, C. M. (2005) Putting the natural killer cells in its place, Immunology, 117, 1–10.CrossRefGoogle Scholar
  17. 17.
    Souza-Fonseca-Guimaraes, F., Parlato, M., Philippart, F., Misset, B., Cavaillon, J. M., and Adib-Conquy, M. (2012) Toll-like receptors expression and interferon-γ production by NK cells in human sepsis, Crit. Care, 16, R206.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Tadema, H., Abdulahad, W. H., Stegeman, C. A., Kallenberg, C. G., and Heeringa, P. (2011) Increased expression of Toll-like receptors by monocytes and natural killer cells in ANCA-associated vasculitis, PLoS One, 6, e24315.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kanevskiy, L. M., Telford, W. G., Sapozhnikov, A. M., and Kovalenko, E. I. (2013) Lipopolysaccharide induces IFN-γ production in human NK cells, Front. Immunol., 4, 11.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Shibata, T., Motoi, Y., Tanimura, N., Yamakawa, N., Akashi-Takamura, S., and Miyake, K. (2011) Intracellular TLR4/MD-2 in macrophages senses Gram-negative bacteria and induces a unique set of LPS-dependent genes, Int. Immunol., 23, 503–510.PubMedCrossRefGoogle Scholar
  21. 21.
    Hornef, M. W., Normark, B. H., Vandewalle, A., and Normark, S. (2003) Intracellular recognition of lipopolysaccharide by Toll-like receptor 4 in intestinal epithelial cells, J. Exp. Med., 198, 1225–1235.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Abo, T., and Balch, C. M. (1981) A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1), J. Immunol., 127, 1024–1029.PubMedGoogle Scholar
  23. 23.
    Luetke-Eversloh, M., Killig, M., and Romagnani, C. (2013) Signatures of human NK cell development and terminal differentiation, Front. Immunol., 4, 499.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Cavaillon, J. M., and Adib-Conquy, M. (2006) Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis, Crit. Care, 10, 233.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Cooper, M. A., Fehniger, T. A., Turner, S. C., Chen, K. S., Ghaheri, B. A., Ghayur, T., Carson, W. E., and Caligiuri, M. A. (2001) Human natural killer cells: a unique innate immunoregulatory role for the CD56 (bright) subset, Blood, 97, 3146–3151.PubMedCrossRefGoogle Scholar
  26. 26.
    Voshol, H., van Zuylen, C. W., Orberger, G., Vliegenthart, J. F., and Schachner, M. (1996) Structure of the HNK-1 carbohydrate epitope on bovine peripheral myelin glycoprotein P0, J. Biol. Chem., 271, 22957–22960.PubMedCrossRefGoogle Scholar
  27. 27.
    Nielsen, C. M., White, M. J., Goodier, M. R., and Riley, E. M. (2013) Functional significance of CD57 expression on human NK cells and relevance to disease, Front. Immunol., 4, 422.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lopez-Verges, S., Milush, J. M., Pandey, S., York, V. A., Arakawa-Hoyt, J., Pircher, H., Norris, P. J., Nixon, D. F., and Lanier, L. L. (2010) CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK cell subset, Blood, 116, 3865–3874.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Gayoso, I., Sanchez-Correa, B., Campos, C., Alonso, C., Pera, A., Casado, J. G., Morgado, S., Tarazona, R., and Solana, R. (2011) Immunosenescence of human natural killer cells, J. Innate Immun., 3, 337–343.PubMedCrossRefGoogle Scholar
  30. 30.
    Kovalenko, E. I., Abakushina, E. V., Telford, W., Kapoor, V., Korchagina, E. Yu., Khaidukov, S. V., Molotkovskaya, I. M., Sapozhnikov, A. M., Vlaskin, P. A., and Bovin, N. V. (2007) Clustered carbohydrates as a target for natural killer cells: a model system, Histochem. Cell. Biol., 127, 313–326.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • L. M. Kanevskiy
    • 1
  • S. A. Erokhina
    • 1
    • 2
  • M. A. Streltsova
    • 1
  • W. G. Telford
    • 3
  • A. M. Sapozhnikov
    • 1
    • 2
  • E. I. Kovalenko
    • 1
    Email author
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Experimental Transplantation and Immunology Branch, National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations