Biochemistry (Moscow)

, Volume 79, Issue 12, pp 1333–1338 | Cite as

Distinct biological activity of lipopolysaccharides with different lipid a acylation status from mutant strains of Yersinia pestis and some members of genus Psychrobacter

  • K. V. Korneev
  • A. N. Kondakova
  • N. P. Arbatsky
  • K. A. Novototskaya-Vlasova
  • E. M. Rivkina
  • A. P. Anisimov
  • A. A. Kruglov
  • D. V. Kuprash
  • S. A. Nedospasov
  • Yu. A. Knirel
  • M. S. Drutskaya
Article

Abstract

Correlation between the chemical structure of lipid A from various Gram-negative bacteria and biological activity of their lipopolysaccharide (LPS) as an agonist of the innate immune receptor Toll-like receptor 4 was investigated. Purified LPS species were quantitatively evaluated by their ability to activate the production of tumor necrosis factor (TNF) by murine bone marrow-derived macrophages in vitro. Wild-type LPS from plague-causing bacteria Yersinia pestis was compared to LPS from mutant strains with defects in acyltransferase genes (lpxM, lpxP) responsible for the attachment of secondary fatty acid residues (12:0 and 16:1) to lipid A. Lipid A of Y. pestis double ΔlpxMlpxP mutant was found to have the chemical structure that was predicted based on the known functions of the respective acyltransferases. The structures of lipid A from two members of the ancient psychrotrophic bacteria of the genus Psychrobacter were established for the first time, and biological activity of LPS from these bacteria containing lipid A fatty acids with shorter acyl chains (C10–C12) than those in lipid A from LPS of Y. pestis or E. coli (C12–C16) was determined. The data revealed a correlation between the ability of LPS to activate TNF production by bone marrow-derived macrophages with the number and the length of acyl chains within lipid A.

Key words

lipopolysaccharide lipid A Toll-like receptor 4 tumor necrosis factor Yersinia pestis Psychrobacter spp. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B., and Beutler, B. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene, Science, 282, 2085–2088.PubMedCrossRefGoogle Scholar
  2. 2.
    Park, B. S., Song, D. H., Kim, H. M., Choi, B. S., Lee, H., and Lee, J. O. (2009) The structural basis of lipopolysac-charide recognition by the TLR4-MD-2 complex, Nature, 458, 1191–1195.PubMedCrossRefGoogle Scholar
  3. 3.
    Kovach, N. L., Yee, E., Munford, R. S., Raetz, C. R., and Harlan, J. M. (1990) Lipid IVA inhibits synthesis and release of tumor necrosis factor induced by lipopolysaccharide in human whole blood ex vivo, J. Exp. Med., 172, 77–84.PubMedCrossRefGoogle Scholar
  4. 4.
    Golenbock, D. T., Hampton, R. Y., Qureshi, N., Takayama, K., and Raetz, C. R. (1991) Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes, J. Biol. Chem., 266, 19490–19498.PubMedGoogle Scholar
  5. 5.
    Qureshi, N., Takayama, K., Mascagni, P., Honovich, J., Wong, R., and Cotter, R. J. (1988) Complete structural determination of lipopolysaccharide obtained from deep rough mutant of Escherichia coli. Purification by high performance liquid chromatography and direct analysis by plasma desorption mass spectrometry, J. Biol. Chem., 263, 11971–11976.PubMedGoogle Scholar
  6. 6.
    Lu, Y. C., Yeh, W. C., and Ohashi, P. S. (2008) LPS/TLR4 signal transduction pathway, Cytokine, 42, 145–151.PubMedCrossRefGoogle Scholar
  7. 7.
    Kawai, T., and Akira, S. (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors, Nat. Immunol., 11, 373–384.PubMedCrossRefGoogle Scholar
  8. 8.
    Maeshima, N., and Fernandez, R. C. (2012) Recognition of lipid A variants by the TLR4-MD-2 receptor complex, Front. Cell. Infect. Microbiol., 3, 3.Google Scholar
  9. 9.
    Glauser, M. P., Zanetti, G., Baumgartner, J. D., and Cohen, J. (1991) Septic shock: pathogenesis, Lancet, 338, 732–736.PubMedCrossRefGoogle Scholar
  10. 10.
    Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J., and Gusovsky, F. (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction, J. Biol. Chem., 274, 10689–10692.PubMedCrossRefGoogle Scholar
  11. 11.
    Anisimov, A. P., Shaikhutdinova, R. Z., Pan’kina, L. N., Feodorova, V. A., Savostina, E. P., Bystrova, O. V., Lindner, B., Mokrievich, A. N., Bakhteeva, I. V., Titareva, G. M., Dentovskaya, S. V., Kocharova, N. A., Senchenkova, S. N., Holst, O., Devdariani, Z. L., Popov, Y. A., Pier, G. B., and Knirel, Y. A. (2007) Effect of deletion of the lpxM gene on virulence and vaccine potential of Yersinia pestis in mice, J. Med. Microbiol., 56, 443–453.PubMedCrossRefGoogle Scholar
  12. 12.
    Dentovskaya, S. V., Anisimov, A. P., Kondakova, A. N., Lindner, B., Bystrova, O. V., Svetoch, T. E., Shaikhutdinova, R. Z., Ivanov, S. A., Bakhteeva, I. V., Titareva, G. M., and Knirel, Y. A. (2011) Functional characterization and biological significance of Yersinia pestis lipopolysaccharide biosynthesis genes, Biochemistry (Moscow), 76, 808–822.CrossRefGoogle Scholar
  13. 13.
    Bakermans, C., Ayala-del-Rio, H. L., Ponder, M. A., Vishnivetskaya, T., Gilichinsky, D., Thomashow, M. F., and Tiedje, J. M. (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost, Int. J. Syst. Evol. Microbiol., 56, 1285–1291.PubMedCrossRefGoogle Scholar
  14. 14.
    Robbins, P. W., and Uchida, T. (1962) Studies on the chemical basis of the phage conversion of O-antigens in the E-group Salmonellae, Biochemistry, 1, 323–335.PubMedCrossRefGoogle Scholar
  15. 15.
    Knirel, Y. A., Lindner, B., Vinogradov, E. V., Kocharova, N. A., Senchenkova, S. N., Shaikhutdinova, R. Z., Dentovskaya, S. V., Fursova, N. K., Bakhteeva, I. V., Titareva, G. M., Balakhonov, S. V., Holst, O., Gremyakova, T. A., Pier, G. B., and Anisimov, A. P. (2005) Temperature-dependent variations and intraspecies diversity of the structure of the lipopolysaccharide of Yersinia pestis, Biochemistry, 44, 1731–1743.PubMedCrossRefGoogle Scholar
  16. 16.
    Shakhov, A. N., Collart, M. A., Vassalli, P., Nedospasov, S. A., and Jongeneel, C. V. (1990) κB-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor α gene in primary macrophages, J. Exp. Med., 171, 35–47.PubMedCrossRefGoogle Scholar
  17. 17.
    Vinogradov, E., Perry, M. B., and Conlan, J. W. (2002) Structural analysis of Francisella tularensis lipopolysaccharide, Eur. J. Biochem., 269, 6112–6118.PubMedCrossRefGoogle Scholar
  18. 18.
    Phillips, N. J., Schilling, B., McLendon, M. K., Apicella, M. A., and Gibson, B. W. (2004) Novel modification of lipid A of Francisella tularensis, Infect. Immun., 72, 5340–5348.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kondakova, A. N., Novototskaya-Vlasova, K. A., Arbatsky, N. P., Drutskaya, M. S., Shcherbakova, V. A., Shashkov, A. S., Gilichinsky, D. A., Nedospasov, S. A., and Knirel, Y. A. (2012) Structure of the O-specific polysaccharide from the lipopolysaccharide of Psychrobacter cryohalolentis K5T containing a 2,3,4-triacetamido-2,3,4-trideoxy-L-arabinose moiety, J. Nat. Prod., 75, 2236–2240.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • K. V. Korneev
    • 1
    • 2
    • 3
  • A. N. Kondakova
    • 4
  • N. P. Arbatsky
    • 4
  • K. A. Novototskaya-Vlasova
    • 5
  • E. M. Rivkina
    • 5
  • A. P. Anisimov
    • 6
  • A. A. Kruglov
    • 2
    • 3
  • D. V. Kuprash
    • 1
    • 2
    • 3
  • S. A. Nedospasov
    • 1
    • 2
    • 3
  • Yu. A. Knirel
    • 4
  • M. S. Drutskaya
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of Immunology, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  4. 4.Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  5. 5.Institute for Physicochemical and Biological Problems in Soil ScienceRussian Academy of SciencesPushchino, Moscow RegionRussia
  6. 6.State Research Center for Applied Microbiology and BiotechnologyObolensk, Moscow RegionRussia

Personalised recommendations