Biochemistry (Moscow)

, Volume 79, Issue 12, pp 1308–1321 | Cite as

Modern anti-cytokine therapy of autoimmune diseases

Review

Abstract

The emergence of genetically engineered biological agents opened new prospects in the treatment of autoimmune and inflammatory diseases. Cytokines responsible for regulation of a wide range of processes during development of the normal immune response are among the most successful therapeutic targets. Studies carried out in recent decades and accompanied by rapid development of biotechnology have promoted establishing in detail the role and place of cytokines in autoimmune and inflammatory pathologies. Nevertheless, mechanisms that underlie anti-cytokine therapy are still not fully understood. This review examines the role of such cytokines as TNF, IL-1, and IL-6 in the development of inflammatory processes and the action mechanisms of their inhibitors.

Key words

cytokines TNF IL-6 IL-1 autoimmunity chronic inflammation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carswell, E. A., Old, L. J., Kassel, R. L., Green, S., Fiore, N., and Williamson, B. (1975) An endotoxin serum factor that causes necrosis of tumor, Proc. Natl. Acad. Sci. USA, 72, 3666–3670.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Tracey, D., Klareskog, L., Sasso, E. H., Salfeld, J. G., and Tak, P. P. (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review, Pharmacol. Therap., 117, 244–279.Google Scholar
  3. 3.
    Black, R. A., Rauch, C. R., Kozlovsky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J., and Cerretti, D. P. (1997) A metalloproteinase disintegrin that releases tumor-necrosis factor-alpha from cells, Nature, 385, 729–733.PubMedGoogle Scholar
  4. 4.
    Simmonds, R. E., and Foxwell, B. M. (2008) NF-κB and its relevance to arthritis and inflammation, Rheumatology, 47, 584–590.PubMedGoogle Scholar
  5. 5.
    Grell, M., Douni, E., Wajant, H., Lohden, M., Clauss, M., Maxeiner, B., Georgopoulus, S., Lesslauer, W., Kollias, G., Pfizenmaier, K., and Scheurich, P. (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor, Cell, 83, 793–802.PubMedGoogle Scholar
  6. 6.
    Grell, M., Becke, F. M., Wajant, H., Mannel, D. N., and Scheurich, P. (1998) TNF receptor type 2 mediates thymocyte proliferation independently of TNF receptor type 1, Eur. J. Immunol., 28, 257–263.PubMedGoogle Scholar
  7. 7.
    Carpentier, I., Coornaert, B., and Beyaert, R. (2004) Function and regulation of tumor necrosis factor receptor type 2, Curr. Med. Chem., 11, 2205–2212.PubMedGoogle Scholar
  8. 8.
    Chen, X., Wu, X., Zhou, Q., Howard, O. M. Z., Netea, M. G., and Oppenheim, J. J. (2013) TNFR2 is critical for stabilization of the CD4+FoxP3+ regulatory T cell phenotype in the inflammatory environment, J. Immunol., 190, 1076–1084.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Redl, H., Schlag, G., Adolf, G. R., Natmessing, B., and Davies, J. (1995) Tumor necrosis factor (TNF)-dependent shedding of the p55 TNF receptor in a baboon model of bacteremia, Infect. Immun., 63, 297–300.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Aderka, D., Engelmann, H., Maor, Y., Brakebusch, C., and Wallach, D. (1992) Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors, J. Exp. Med., 175, 323–329.PubMedGoogle Scholar
  11. 11.
    Keeton, R., Allie, N., Dambuza, I., Abel, B., Hsu, N.-J., Sebesho, B., Randall, P., Burger, P., Fick, E., Quesniaux, V. F. J., Ryffel, B., and Jacobs, M. (2014) Soluble TNFRp75 regulates host protective immunity against Mycobacterium tuberculosis, J. Clin. Invest., 124, 1537–1551.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Schett, G. (2009) Osteoimmunology in rheumatic diseases, Arthr. Res. Therap., 11, 210–216.Google Scholar
  13. 13.
    Abu-Amer, Y., Erdmann, J., Kollias, G., Alexopoulou, L., Ross, P., and Teitelbaum, S. L. (2000) Tumor necrosis factor receptors types 1 and 2 differentially regulate osteoclastogenesis, J. Biol. Chem., 275, 27307–27310.PubMedGoogle Scholar
  14. 14.
    Requeiro, M., Kip, K. E., Baidoo, L., Swoqer, J. M., and Schraut, W. (2014) Postoperative therapy with infliximab prevents long-term Crohn’s disease recurrence, Clin. Gastroenterol. Hepatol., 12, 1494–1502.Google Scholar
  15. 15.
    Verazza, S., Negro, G., Marafon, D., Consolaro, A., Martini, A., and Ravelli, A. (2013) Possible discontinuation of therapies after clinical remission in juvenile idiopathic arthritis, Clin. Exp. Rheumatol., 31, S98–101.PubMedGoogle Scholar
  16. 16.
    Huang, Z., Yang, B., Shi, Y., Cai, B., Li, Y., Feng, W., Fu, Y., Luo, L., and Wang, L. (2012) Anti-TNF-α therapy improves Treg and suppresses Teff in patients with rheumatoid arthritis, Cell. Immunol., 279, 25–29.PubMedGoogle Scholar
  17. 17.
    Tanaka, Y., Hirata, S., Kubo, S., Fukuyo, S., Hanami, K., Sawamukai, N., Nakano, K., Nakayamada, S., Yamaoka, K., Sawamura, F., and Saito, K. (2013) Discontinuation of adalimumab after achieving remission in patients with established rheumatoid arthritis: 1 year outcome of the HONOR study, Ann. Rheum. Dis., 2013, Nov 28, doi: 10.1136/annrheumdis-2013-204016.Google Scholar
  18. 18.
    Targan, S. R., Hanauer, S. B., Van Deventer, S. J., Mayer, L., Present, D. H., Braakman, T., DeWoody, K. L., Schaible, T. F., and Rutgeerts, P. J. (1997) A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s disease cA2 study group, N. Engl. J. Med., 337, 1029–1035.PubMedGoogle Scholar
  19. 19.
    Van Dullemen, H. M., Van Deventer, S. J., Hommes, D. W., Bijl, H. A., Jansen, J., Tytgat, G. N., and Woody, J. (1995) Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2), Gastroenterology, 109, 129–135.PubMedGoogle Scholar
  20. 20.
    Braun, J., Brandt, J., Listing, J., Zink, A., Alten, R., Golder, W., Gromnica-Ihle, E., Kellner, H., Krause, H., Schneider, M., Sorensen, H., Zeidler, H., Thriene, W., and Sieper, J. (2002) Treatment of active ankylosing spondylitis with infliximab: a randomized controlled multicentre trial, Lancet, 359, 1187–1193.PubMedGoogle Scholar
  21. 21.
    Kruithof, E., Van den Bosch, F., Baeten, D., Herssens, A., De Keyser, F., Mielants, H., and Veys, E. M. (2002) Repeated infusion of infliximab, a chimeric anti-TNF-alpha monoclonal antibody, in patients with active spondyloarthropathy: one years follow up, Ann. Rheum. Dis., 61, 207–212.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Chaudhari, U., Romano, P., Mulcahy, L. D., Dooley, L. T., Baker, D. G., and Gottlieb, A. B. (2001) Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: randomized trial, Lancet, 357, 1842–1847.PubMedGoogle Scholar
  23. 23.
    Knight, D. M., Trinh, H., Le, J., Siegel, S., Shealy, D., McDonough, M., Scallon, B., Moore, M. A., Vilcek, J., and Daddona, P. (1993) Construction and initial characterization of a mouse-human chimeric anti-TNF antibody, Mol. Immunol., 30, 1143–1453.Google Scholar
  24. 24.
    Scallon, B. J., Moore, M. A., Trinh, H., Knight, D. M., and Ghrayeb, J. (1995) Chimeric anti-TNF-alpha monoclonal antibody cA2 binds recombinant transmembrane TNF-alpha and activates immune effector functions, Cytokine, 7, 251–259.PubMedGoogle Scholar
  25. 25.
    Kruglov, A. A., Grivennikov, S. I., Kuprash, D. V., Winsauer, C., Prepens, S., Seleznik, G. M., Ebert, G., Littman, D. R., Heikenwalder, M., Tumanov, A. V., and Nedospasov, S. A. (2013) Nonredundant function of soluble LTa3 produced by innate lymphoid cells in intestinal homeostasis, Science, 342, 1243–1246.PubMedGoogle Scholar
  26. 26.
    Lukina, G. V., and Sigidin, Ya. A. (2008) Safety of therapy with adalimumab, Nauch. Prakt. Revmatol., 2, 60–63.Google Scholar
  27. 27.
    Sigidin, Ya. A., and Lukina, G. V. (2008) Adalimumab in therapy of early rheumatoid arthritis, Nauch. Prakt. Revmatol., 2, 56–59.Google Scholar
  28. 28.
    Kay, J., and Rahman, U. (2009) Golimumab: a novel human anti-TNF-α monoclonal antibody for the treatment of rheumatoid arthritis, ankylosing spondylitis and psoriatic arthritis, Core Evidence, 4, 159–170.PubMedCentralGoogle Scholar
  29. 29.
    Lukina, G. V., and Sigidin, Ya. A. (2012) Certolizumab in therapy of rheumatoid arthritis, Sovrem. Revmatol., 2, 44–49.Google Scholar
  30. 30.
    Shealy, D., Cai, A., Staquet, K., Baker, A., Lacy, E. R., Johns, L., Vafa, O., Gunn III, G., Tam, S., Sague, S., Wang, D., Brigham-Burke, M., Dalmonte, P., Emmell, E., Pikounis, B., Bugelski, P. J., Zhou, H., Scallon, B., and Giles-Komar, J. (2010) Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor α, MAbs, 2, 428–439.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Schaible, H.-G., Von Anchet, G. S., Boettger, M. K., Brauer, R., Gajda, M., Richter, F., Hensellek, S., Brenn, D., and Natura, G. (2010) The role of proinflammatory cytokines in the generation and maintenance of joint pain, Ann. NY Acad. Sci., 1193, 60–69.PubMedGoogle Scholar
  32. 32.
    Notley, C. A., Inglis, J. J., Alzabin, S., McCann, F. E., McNamee, K. E., and Williams, R. O. (2008) Blockade of tumor necrosis factor in collagen-induced arthritis reveals a novel immunoregulatory pathway for Th1 and Th17 cells, J. Exp. Med., 205, 2491–2497.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Szalay, B., Vasarhelyi, B., Cseh, A., Tulassay, T., Deak, M., Kovacs, L., and Balog, A. (2013) The impact of conventional DMARD and biological therapies on CD4+ cell subsets in rheumatoid arthritis: a follow up study, Clin. Rheumatol., 33, 175–185.PubMedGoogle Scholar
  34. 34.
    Evans, H. G., Roostalu, U., Walter, G. J., Gullick, N. J., Frederiksen, K. S., Roberts, C. A., Sumner, J., Baeten, D. L., Gerwien, J. G., Cope, A. P., Geissmann, F., Kirkham, B. W., and Taams, L. S. (2014) TNF-α blockade induces IL-10 expression in human CD4+ T cells, Nat. Commun., 5, 3199–3211.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Anolik, J. H., Ravikumar, R., Barnard, J., Owen, T., Almudevar, A., Milner, E. C., Miller, C. H., Dutcher, P. O., Hadley, J. A., and Sanz, I. (2008) Cutting edge: anti-tumor necrosis factor therapy in rheumatoid arthritis inhibits memory B lymphocytes via effects on lymphoid germinal centers and follicular dendritic cell networks, J. Immunol., 180, 688–692.PubMedGoogle Scholar
  36. 36.
    Valencia, X., Stephens, G., Goldbach-Mansky, R., Wilson, M., Shevach, E. M., and Lipsky, P. E. (2006) TNF down-modulates the function of human CD4+ CD25hi T-regulatory cells, Blood, 108, 253–261.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Nie, H., Zheng, Y., Li, R., Cuo, T. B., He, D., Fang, L., Liu, X., Xiao, L., Chen, X., Wan, B., Chin, Y. E., and Zhang, J. Z. (2013) Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis, Nat. Med., 19, 322–328.PubMedGoogle Scholar
  38. 38.
    Dinarello, C. A. (1994) The interleukin-1 family: 10 years of discovery, FASEB J., 8, 1314–1325.PubMedGoogle Scholar
  39. 39.
    Arend, W. P., Malyak, M., Guthridge, C. J., and Gabay, C. (1998) Interleukin-1 receptor antagonist: role in biology, Ann. Rev. Immunol., 16, 27–55.Google Scholar
  40. 40.
    Magne, D., Palmer, G., Barton, J. L., Mezin, F., Talabot-Ayer, D., Bas, S., Duffy, T., Noger, M., Guerne, P.-A., Nicklin, M. J. H., and Gabay, C. (2006) The new IL-1 family member IL-1F8 stimulates production of inflammatory mediators by synovial fibroblast and articular, Arthr. Res. Ther., 8, R80.Google Scholar
  41. 41.
    Kumar, S., McDonnell, P. C., Lehr, R., Tierney, L., Tzimas, M. N., Griswold, D. E., Capper, E. A., Tal-Singer, R., Wells, G. I., Doyle, M. L., and Young, P. R. (2000) Identification and initial characterization of four novel members of the interleukin-1 family, J. Biol. Chem., 275, 10308–10314.PubMedGoogle Scholar
  42. 42.
    Smith, D. E., Renshaw, B. R., Ketchem, R. R., Kubin, M., Garka, K. E., and Sims, J. E. (2001) Four new members expand the interleukin-1 family, J. Biol. Chem., 275, 1169–1175.Google Scholar
  43. 43.
    Dinarello, C. A. (1996) Biologic basis for interleukin-1 in disease, Blood, 87, 2095–2147.PubMedGoogle Scholar
  44. 44.
    Sims, J. E., and Smith, D. E. (2010) The IL-1 family: regulators of immunity, Nat. Rev. Immunol., 10, 89–102.PubMedGoogle Scholar
  45. 45.
    O’Neill, L. A. J. (2008) The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress, Immunol. Rev., 226, 10–18.PubMedGoogle Scholar
  46. 46.
    Garlanda, C., Dinarello, C. A., and Mantovani, A. (2013) The interleukin-1 family: back to the future, Immunity, 39, 1003–1018.PubMedGoogle Scholar
  47. 47.
    Martinon, F., Mayor, A., and Tschopp, J. (2009) The inflammasomes: guardians of the body, Ann. Rev. Immunol., 27, 229–269.Google Scholar
  48. 48.
    Gross, O., Yazdi, A. S., Thomas, C. J., Masin, M., Heinz, L. X., Guarda, G., Quadroni, M., Drexler, S. K., and Tschopp, J. (2012) Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1, Immunity, 36, 388–400.PubMedGoogle Scholar
  49. 49.
    Colotta, F., Re, F., Muzio, M., Bertini, R., Polentarutti, N., Sironi, M., Giri, J. G., Dower, S. K., Sims, J. E., and Mantovani, A. (1993) Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4, Science, 261, 472–475.PubMedGoogle Scholar
  50. 50.
    Colotta, F., Dower, S. K., Sims, J. E., and Mantovani, A. (1994) The type II “decoy” receptor: a novel regulatory pathway for interleukin 1, Immunol. Today, 15, 562–528.PubMedGoogle Scholar
  51. 51.
    Penton-Rol, G., Orlando, S., Polentarytti, N., Bernasconi, S., Muzio, M., Introna, M., and Mantovani, A. (1999) Bacterial lipopolysaccharide causes rapid shedding, followed by inhibition of mRNA expression, of the IL-1 type II receptor, with concomitant up-regulation of the type I receptor and induction of incompletely spliced transcript, J. Immunol., 162, 2931–2938.PubMedGoogle Scholar
  52. 52.
    Barksby, H. E., Lea, S. R., and Preshaw, P. M. (2007) The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders, Clin. Exp. Immunol., 149, 217–225.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Smith, D. E., Hanna, R., Friend, D., Moore, H., Chen, H., Farese, A. M., MacVittie, T. J., Virca, G. D., and Sims, J. E. (2003) The soluble form of IL-1 receptor accessory protein enhances the ability of soluble type II IL-1 receptor to inhibit IL-1 action, Immunity, 18, 87–96.PubMedGoogle Scholar
  54. 54.
    Donath, M. Y. (2014) Targeting inflammation in the treatment of type 2 diabetes: time to start, Nature Rev. Drug Discov., 13, 465–476.Google Scholar
  55. 55.
    Dinarello, C. A., and van der Meer, J. W. M. (2013) Treating inflammation by blocking interleukin-1 in humans, Semin. Immunol., 25, 469–484.PubMedGoogle Scholar
  56. 56.
    Khanna, P., Gladue, H. S., Singh, M. K., FitzGerald, D., Bae, S., Prakash, S., Kaldas, M., Gogia, M., Berrocal, V., Townsend, W., Terkeltaub, R., and Khanna, D. (2014) Treatment of acute gout: a systematic review, Sem. Arthritis Rheum., 44, 31–38.Google Scholar
  57. 57.
    Sterba, G., and Sterba, Y. (2013) Controlling inflammation. Contemporary treatment for autoinflammatory diseases and syndromes, Dermatol. Clin., 31, 507–511.PubMedGoogle Scholar
  58. 58.
    Gabay, C., and Arend, W. P. (1998) Treatment of rheumatoid arthritis with IL-1 inhibitors, Springer Semin. Immunopathol., 20, 229–246.PubMedGoogle Scholar
  59. 59.
    Bunning, R. A., Richardson, H. J., Crawford, A., Skiodt, H., Hughes, D., Evans, D. B., Gowen, M., Dobson, P. R., Brown, B. L., and Russell, R. (1986) The effect of interleukin-1 on connective tissue metabolism and its relevance to arthritis, Agents Actions Suppl., 18, 131–152.PubMedGoogle Scholar
  60. 60.
    Volin, M. V., Shah, M. R., Tokuhira, M., Haines, G. K., Woods, J. M., and Koch, A. E. (1998) RANTES expression and contribution to monocyte chemotaxis in arthritis, Clin. Immunol. Immunopathol., 89, 44–53.PubMedGoogle Scholar
  61. 61.
    Nakatsuka, K., Tanaka, Y., Hubscher, S., Abe, M., Wake, A., Saito, K., Morimoto, I., and Eto, S. (1997) Rheumatoid synovial fibroblasts are stimulated by the cellular adhesion to T cells through lymphocyte function associated antigen-1/intercellular adhesion molecule-1, J. Rheumatol., 24, 458–464.PubMedGoogle Scholar
  62. 62.
    Garcia-Hernandez, M. H., Gonzalez-Amaro, R., and Portales-Perez, D. P. (2014) Specific therapy to regulate inflammation in rheumatoid arthritis: molecular aspects, Immunotherapy, 6, 623–636.PubMedGoogle Scholar
  63. 63.
    Arend, W. P., and Gabay, C. (2004) Cytokines in the rheumatic diseases, Rheum. Dis. Clin. N. Am., 30, 41–67.Google Scholar
  64. 64.
    Chandrasekhar, S., and Phadke, K. (1988) Interleukin-1-induced alterations in proteoglycan metabolism and matrix assembly, Arch. Biochem. Biophys., 265, 294–301.PubMedGoogle Scholar
  65. 65.
    Murata, M., Bonassar, L. J., Wright, M., Mankin, H. J., and Towle, C. A. (2003) A role for the interleukin-1 receptor in the pathway linking static mechanical compression to decreased proteoglycan synthesis in surface articular cartilage, Arch. Biochem. Biophys., 413, 229–235.PubMedGoogle Scholar
  66. 66.
    Ikeda, S., Saijo, S., Murayama, M. A., Shimizu, K., Akitsu, A., and Iwakura, Y. (2014) Excess IL-1 signaling enhances the development of Th17 cells by down-regulating TGF-β-induced Foxp3 expression, J. Immunol., 192, 1449–1458.PubMedGoogle Scholar
  67. 67.
    Brennan, F. M., and McInnes, I. B. (2008) Evidence that cytokines play a role in rheumatoid arthritis, J. Clin. Invest., 118, 3537–3545.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Opal, S. M., Fisher, C. J., Dhainaut, J. F., Vincent, J. L., Brase, R., Lowry, S. F., Sadoff, J. C., Slotman, G. J., Levy, H., Balk, R. A., Shelly, M. P., Pribble, J. P., LaBrecque, J. F., Lookabaugh, J., Donovan, H., Dubin, H., Baughman, R., Noeman, J., DeMaria, E., Matzek, K., Abraham, E., and Seneff, M. (1997) Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group, Crit. Care Med., 25, 1115–1124.PubMedGoogle Scholar
  69. 69.
    Fisher, C. J., Dhainaut, J. F., Opal, S. M., Pribble, J. P., Balk, R. A., Slotman, G. J., Iberti, T. J., Rackow, E. C., Shapiro, M., and Greenman, R. L. (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group, JAMA, 271, 1836–1843.PubMedGoogle Scholar
  70. 70.
    Hirano, T., Yasukawa, K., Harada, H., Taga, T., Watanabe, Y., Matsuda, T., Kashiwamura, S., Nakajima, K., Koyama, K., Iwamatsu, A., Tsunasawa, S., Sakiyama, F., Matsu, H., Takahara, Y., Taniguchi, T., and Kishimoto, T. (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin, Nature, 324, 73–76.PubMedGoogle Scholar
  71. 71.
    Rose-John, S. (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6, Int. J. Biol. Sci., 8, 1237–1247.PubMedCentralPubMedGoogle Scholar
  72. 72.
    White, U. A., and Stephens, J. M. (2011) The gp130 receptor cytokine family: regulators of adipocyte development and function, Curr. Pharm. Des., 17, 340–346.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Kishimoto, J., Akira, S., and Taga, T. (1992) IL-6 receptor mechanism of signal transduction, Int. J. Immunopharmacol., 14, 431–438.PubMedGoogle Scholar
  74. 74.
    Heinrich, P. C., Behrmann, I., Muller-Newen, G., Schaper, F., and Graeve, L. (1998) Interleukin-6-type cytokine signaling through the gp130/JAK/STAT pathway, Biochem. J., 334, 297–314.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Mullberg, J., Schooltink, H., Stoyan, T., Gunther, M., Graeve, L., Buse, G., Mackiewicz, A., Heinrich, P. C., and Rose-John, S. (1993) The soluble interleukin-6 receptor is generated by shedding, Eur. J. Immunol., 23, 473–480.PubMedGoogle Scholar
  76. 76.
    Hurst, S. M., Wilkinson, T. S., McLoughlin, R. M., Jones, S., Horiuchi, S., Yamamoto, N., Rose-John, S., Fuller, G. M., Topley, N., and Jones, S. A. (2001) IL-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation, Immunity, 14, 706–714.Google Scholar
  77. 77.
    Horiuchi, S., Koyanagi, Y., Miyamoto, H., Tanaka, Y., and Waki, M. (1994) Soluble interleukin-6 receptors released from T cell or granulocyte/macrophage cell lines and human peripheral blood mononuclear cells are generated through an alternative splicing mechanism, Eur. J. Immunol., 24, 1945–1948.PubMedGoogle Scholar
  78. 78.
    Briso, E. M., Dienz, O., and Rincon, M. (2008) Cutting edge: soluble IL-6R is produced by IL-6R ectodomain shedding activates CD4 T cell, J. Immunol., 180, 7102–7106.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Lotz, M., Jirik, F., Kabouridis, P., Tsoukas, C., Hirano, T., Kishimoto, T., and Carson, D. A. (1988) B cell stimulating factor 2/interleukin 6 is a costimulant for human thymocytes and T lymphocytes, J. Exp. Med., 167, 1253–1258.PubMedGoogle Scholar
  80. 80.
    Sehgal, P. B. (1990) Interleukin-6: molecular pathophysiology, J. Invest. Dermatol., 94, 2S–6S.PubMedGoogle Scholar
  81. 81.
    Hirano, T. (1998) Interleukin 6 and its receptor: ten years later, Int. Rev. Immunol., 16, 249–284.PubMedGoogle Scholar
  82. 82.
    Striz, I., Brabcova, E., Kolesar, L., and Sekerkova, A. (2014) Cytokine networking of innate immunity cells: a potential target of therapy, Clin. Sci., 126, 593–612.PubMedGoogle Scholar
  83. 83.
    Marz, P., Cheng, J.-G., Gadient, R. A., Patterson, P. H., Stoyan, T., Otten, U., and Rose-John, S. (1998) Sympathetic neurons can produce and respond to interleukin 6, Proc. Natl. Acad. Sci. USA, 95, 3251–3256.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Streit, W. J., Hurley, S. D., McGraw, T. S., and Semple-Rowland, S. L. (2000) Comparative evaluation of cytokine profiles and reactive gliosis supports a critical role from interleukin-6 in neuroglia signaling during regeneration, J. Neurosci. Res., 61, 10–20.PubMedGoogle Scholar
  85. 85.
    Wallenius, V., Wallenius, K., Ahren, B., Rudling, M., Carlsten, H., Dickson, S. L., Ohlsson, C., and Jansson, J. O. (2002) Interleukin-6-deficient mice develop mature-onset obesity, Nature Med., 8, 75–79.PubMedGoogle Scholar
  86. 86.
    Erta, M., Quintana, A., and Hidalgo, J. (2012) Interleukin-6, major cytokine in the central nervous system, Int. J. Biol. Sci., 8, 1254–1266.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Scheller, J., Garbers, C., and Rose-John, S. (2014) Interleukin-6: from basic to selective blockade of pro-inflammatory activities, Semin. Immunol., 26, 2–12.PubMedGoogle Scholar
  88. 88.
    Tanaka, T., and Kishimoto, T. (2012) Targeting interleukin-6: all the way to treat autoimmune and inflammatory disease, Int. J. Biol. Sci., 8, 1227–1236.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Kimura, A., and Kishimoto, T. (2010) IL-6: regulator of Treg/Th17 balance, Eur. J. Immunol., 40, 1830–1835.PubMedGoogle Scholar
  90. 90.
    Samson, M., Audia, S., Janikashvili, N., Ciudad, M., Trad, M., Fraszczak, J., Ornetti, P., Maillefert, J. F., Miossec, P., and Bonnotte, B. (2012) Brief report: inhibition of interleukin-6 function corrects TH17/Treg cell imbalance in patients with rheumatoid arthritis, Arthritis Rheum., 64, 2499–24503.PubMedGoogle Scholar
  91. 91.
    Nishida, S., Haqihara, K., Shima, Y., Kawai, M., Kuwahara, Y., Arimitsu, J., Hirano, T., Narazaki, M., Ogata, A., Yoshizaki, K., Kawase, I., Kishimoto, T., and Tanaka, T. (2009) Rapid improvement of AA amyloidosis with humanized anti-interleukin 6 receptor antibody treatment, Ann. Rheum. Dis., 68, 1235–1236.PubMedGoogle Scholar
  92. 92.
    Roll, P., Muhammad, K., Schumann, M., Kleinert, S., Einsele, H., Dorner, T., and Tony, H. P. (2011) In vivo effect of the anti-interleukin-6 receptor tocilizumab on the B cell compartment, Arthritis Rheum., 63, 1255–1264.PubMedGoogle Scholar
  93. 93.
    Thiolat, A., Semerano, L., Pers, Y. M., Biton, J., Lemeiter, D., Portales, P., Quentin, J., Jorgensen, C., Decker, P., Boissier, M. C., Louis-Plence, P., and Bessis, N. (2014) Interleukin-6 receptor blockade enhances CD39+ regulatory T cell development in rheumatoid arthritis and in experimental arthritis, Arthritis Rheum., 66, 273–283.Google Scholar
  94. 94.
    Tanaka, T., Hishitani, Y., and Ogata, A. (2014) Monoclonal antibodies in rheumatoid arthritis: comparative effectiveness of tocilizumab with tumor necrosis factor inhibitors, Biologics: Targets Therapy, 8, 141–153.Google Scholar
  95. 95.
    Tanaka, Y., and Mola, E. M. (2014) IL-6 targeting compared to TNF targeting in rheumatoid arthritis: studies of olokizumab, sarilumab and sirukumab, Ann. Rheum. Dis., 73, 1595–1597.PubMedGoogle Scholar
  96. 96.
    Kallen, K.-J. (2002) The role of trans-signaling via the agonistic soluble IL-6 receptor in human disease, Biochim. Biophys. Acta, 1592, 323–343.PubMedGoogle Scholar
  97. 97.
    Chalaris, A., Schmidt-Arras, D., Yamamoto, K., and Rose-John, S. (2012) Interleukin-6 trans-signaling and colonic cancer associated with inflammatory bowel disease, Digest. Dis., 30, 492–499.Google Scholar
  98. 98.
    Barkhausen, T., Tschernig, T., Rosenstiel, T., van Griensven, M., Vonberg, R.-P., Dorsch, M., Mueller-Heine, A., Chalaris, A., Scheller, J., Rose-John, S., Seegert, D., Krettek, C., and Waetzig, G. (2011) Selective blockade of interleukin-6 trans-signaling improves survival in a murine polymicrobial sepsis model, Crit. Care Med., 39, 1407–1413.PubMedGoogle Scholar
  99. 99.
    Nowell, M. A., Williams, A. S., Carty, S. A., Scheller, J., Hayes, A. J., Jones, G. W., Richards, P. J., Slinn, S., Ernst, M., Jemkins, B. J., Topley, N., Rose-John, S., and Jones, S. A. (2009) Therapeutic targeting of IL-6 trans-signaling counteracts STAT3 control of experimental inflammatory arthritis, J. Immunol., 182, 613–622.PubMedGoogle Scholar
  100. 100.
    Atreys, R., Mudter, J., Finotto, S., Mullberg, J., Jostock, T., Wirtz, S., Schutz, M., Bartsch, B., Holtmann, M., Becker, C., Strand, D., Czaja, J., Schlaak, J. F., Lehr, Y. A., Autschbach, F., Schurmann, G., Nishimoto, N., Yoshizaki, K., Ito, H., Kishimoto, T., Galle, P. R., Rose-John, S., and Neurath, M. F. (2000) Blockade of interleukin 6 trans-signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn’s disease and experimental colitis in vivo, Nature Med., 6, 583–588.Google Scholar
  101. 101.
    Ramiro, S., Gaujoux-Viala, C., Nam, J. L., Smolen, J. S., Buch, M., Gossec, L., Van Der Heijde, D., Winthrop, K., and Landewe, R. (2014) Safety of synthetic and biological DMARDs: a systematic literature review informing the 2013 update of the EULAR recommendations for management of rheumatoid arthritis, Ann. Rheum. Dis., 73, 529–535.PubMedGoogle Scholar
  102. 102.
    Rubbert-Roth, A. (2012) Assessing the safety of biologic agents in patients with rheumatoid arthritis, Rheumatology, 51, 38–47.Google Scholar
  103. 103.
    Kaltsonoudis, E., Voulgari, P. V., Konitsiois, S., and Drosos, A. A. (2014) Demyelination and other neurological adverse events after anti-TNF therapy, Autoimmun. Rev., 13, 54–58.PubMedGoogle Scholar
  104. 104.
    Prinz, J. C. (2011) Autoimmune-like syndromes during TNF blockade: does infection have a role? Nat. Rev. Rheumatol., 7, 429–434.PubMedGoogle Scholar
  105. 105.
    Winsauer, C., Kruglov, A. A., Chashchina, A. A., Drutskaya, M. S., and Nedospasov, S. A. (2014) Cellular sources of pathogenic and protective TNF and experimental strategies on utilization of TNF humanized mice, Cytokine Growth Factor Rev., 25, 115–123.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. V. Astrakhantseva
    • 1
  • G. A. Efimov
    • 2
  • M. S. Drutskaya
    • 2
  • A. A. Kruglov
    • 1
    • 3
    • 4
  • S. A. Nedospasov
    • 1
    • 2
    • 3
    • 4
  1. 1.Institute of Molecular Biology and Regional EcologyLobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  3. 3.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  4. 4.German Rheumatism Research CenterLeibnitz InstituteBerlinGermany

Personalised recommendations