Advertisement

Biochemistry (Moscow)

, Volume 79, Issue 11, pp 1267–1272 | Cite as

Expression of hp1 family genes and their plausible role in formation of flamenco phenotype in D. melanogaster

  • A. R. Lavrenov
  • L. N. Nefedova
  • N. I. Romanova
  • A. I. KimEmail author
Article

Abstract

Results of expression analysis of transcription of the flamenco locus that controls transposition of the mobile genetic element gypsy, RNA interference system genes ago3, zuc, aub, and HP1 heterochromatin protein family genes hp1a, hp1b, hp1c, hp1d (rhino), and hp1e in D. melanogaster SS strain mutant on the flamenco gene are presented. We show that the number of transcripts in the SS strain that are formed in the flamenco locus is unchanged in some freely chosen points, and this is different from the wild-type strain where a decreased number of transcripts is observed, which clearly is a result of processing of the flamenco locus primary transcript, a predecessor of piRNA. At the same time, expression of genes of the RNA interference system is not affected, but there is a reduced level of hp1d gene expression in ovary tissue. We suggest that the hp1d gene product is directly or indirectly involved in the flamenco locus primary transcript processing.

Key words

gene expression RNA interference heterochromatin proteins Drosophila flamenco mobile genetic elements 

Abbreviations

HP1

heterochromatin protein 1

MGE

mobile genetic element

piRNA

small mRNA associated with protein PIWI

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lippman, Z., and Martienssen, R. (2004) The role of RNA interference in heterochromatic silencing, Nature, 431, 364–370.PubMedCrossRefGoogle Scholar
  2. 2.
    Moshkovich, N., and Lei, E. P. (2010) HP1 recruitment in the absence of argonaute proteins in Drosophila, PLoS Genet., 6, e1000880.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Kwon, S. H., and Workman, J. L. (2011) HP1c casts light on dark matter, Cell Cycle, 10, 625–630.PubMedCrossRefGoogle Scholar
  4. 4.
    Lee, D. H., Li, Y., Shin, D.-H., Sang, A. Y., Bang, S.-Y., Eun Kyung Park, Han, J.-W., and Kwon, S. H. (2013) DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila, Biochem. Biophys. Res. Commun., 434, 820–828.PubMedCrossRefGoogle Scholar
  5. 5.
    Klattenhoff, C., Xi, H., Li, C., Lee, S., Xu, J., Khurana, J. S., Zhang, F., Schultz, N., Koppetsch, B. S., Nowosielska, A., Seitz, H., Zamore, P. D., Weng, Z., and Theurkauf, W. E. (2009) The Drosophila HP1 homolog rhino is required for transposon silencing and piRNA production by dualstrand clusters, Cell, 138, 1137–1149.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Vermaak, D., and Malik, H. S. (2009) Multiple roles for heterochromatin protein 1 genes in Drosophila, Ann. Rev. Genet., 43, 467–492.PubMedCrossRefGoogle Scholar
  7. 7.
    Castel, S. E., and Martienssen, R. A. (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond, Nat. Rev. Genet., 14, 100–112.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Minervini, C. F., Marsano, R. M., Casieri, P., Fanti, L., Caizzi, R., Pimpinelli, S., Rocchi, M., and Viggiano, L. (2007) Heterochromatin protein 1 interacts with 5′UTR of transposable element ZAM in a sequence-specific fashion, Gene, 393, 1–10.PubMedCrossRefGoogle Scholar
  9. 9.
    Brower-Toland, B., Findley, S. D., Jiang, L., Liu, L., Yin, H., Dus, M., Zhou, P., Elgin, S. C. R., and Lin, H. (2007) Drosophila PIWI associates with chromatin and interacts directly with HP1a, Genes Dev., 21, 2300–2311.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Nefedova, L. N., Romanova, N. I., and Kim, A. I. (2007) Peculiarities of DIP1 gene structural organization in strains of Drosophila melanogaster, mutant at the flamenco gene, Genetika, 43, 71–78.Google Scholar
  11. 11.
    Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G. J. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila, Cell, 128, 1089–1103.PubMedCrossRefGoogle Scholar
  12. 12.
    Mevel-Ninio, M., Pelisson, A., Kinder, J., Campos, A. R., and Bucheton, A. (2007) The flamenco locus controls the gypsy and ZAM retroviruses and is required for Drosophila oogenesis, Genetics, 175, 1615–1624.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Desset, S., Meignin, C., Dastugue, B., and Vaury, C. (2003) COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster, Genetics, 164, 501–509.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Prud’homme, N., Kim, A., Bucheton, A., and Pelisson, A. (2001) Characterization of the flamenco region of the Drosophila melanogaster genome, Genetics, 158, 701–713.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Nefedova, L. N., Urusov, F. A., Romanova, N. I., Shmelkova, A. O., and Kim, A. I. (2012) Investigation of transcriptional and transposon activity of the Tirant retrotransposon in Drosophila melanogaster strains, mutant at the flamenco locus, Genetika, 48, 1089–1096.Google Scholar
  16. 16.
    Goriaux, C., Desset, S., Renaud, Y., Vaury, C., and Brasset, E. (2014) Transcriptional properties and splicing of the flamenco piRNA cluster, EMBO Rep., 15, 411–418.PubMedCrossRefGoogle Scholar
  17. 17.
    Urusov, F. A., Nefedova, L. N., Lavrenov, A. R., Romanova, N. I., and Kim, A. I. (2013) Genetic and molecular analysis of loci complementation, Vavilov Zh. Genet. Selek., 17, 381–389.Google Scholar
  18. 18.
    Kellum, R., and Alberts, B. M. (1995) Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos, J. Cell Sci., 108, 1419–1431.PubMedGoogle Scholar
  19. 19.
    Nishimasu, H., Ishizu, H., Saito, K., Fukuhara, S., Kamatani, M. K., Bonnefond, L., Matsumoto, N., Nishizawa, T., Nakanaga, K., Aoki, J., Ishitani, R., Siomi, H., Siomi, M. C., and Nureki, O. (2012) Structure and function of Zucchini endoribonuclease in piRNA biogenesis, Nature, 491, 284–287.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. R. Lavrenov
    • 1
  • L. N. Nefedova
    • 2
  • N. I. Romanova
    • 2
  • A. I. Kim
    • 2
    Email author
  1. 1.Koltzov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations