Biochemistry (Moscow)

, Volume 79, Issue 11, pp 1237–1244 | Cite as

Antibacterial potential of a basic phospholipase A2 (VRV-PL-V) of Daboia russellii pulchella (Russell’s viper) venom

  • S. Sudarshan
  • B. L. DhananjayaEmail author


Microbial/bacterial resistance against antibiotics is considered as a potentially serious threat to public health. Further, as these antibiotics elicit side effects, there is interest in developing new molecules with novel modes of action from diverse organisms. Along these lines, in this study the antibacterial potential of the basic protein VRV-PL-V (Vipera russellii venom phospholipase A2 fraction V) of Daboia russellii pulchella venom was evaluated. VRV-PL-V demonstrated a potent antibacterial activity against all the human pathogenic strains tested. It inhibited more effectively Gram-positive bacteria like Staphylococcus aureus and Bacillus subtilis when compared to Gram-negative bacteria like Escherichia coli, Vibrio cholerae, Klebsiella pneumoniae, and Salmonella paratyphi. It inhibited bacterial growth with MIC values ranging from 13 to 24 μg/ml. The antibacterial potential of VRV-PL-V was comparable to the standards used like gentamycin, chloramphenicol, and streptomycin. There was a strong correlation between PLA2 activities and hemolytic and antibacterial activity. It was found that even in the presence of p-bromophenacyl bromide (an inhibitor of PLA2 enzymatic activity), there was marked antibacterial activity, suggesting dissociation or partial overlapping of the bactericidal/antimicrobial domains. Therefore, this study shows that although there is a strong correlation between enzymatic and antimicrobial activities of VRV-PL-V, it may also possess other properties that mimic bactericidal/membrane permeability-increasing protein.

Key words

snake venom phospholipase A2 antimicrobial Daboia russellii pulchella human pathogenic bacteria 



minimum inhibitory concentration


p-bromophenacyl bromide


snake venom phospholipase A2


Vipera russellii venom phospholipase A2 fraction V


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Norrby, S. R., Nord, C. E., Finch, R., and European Society of Clinical Microbiology and Infectious Diseases (2005) Lack of development of new antimicrobial drugs: a potential serious threat to public health, Lancet Infect. Dis., 5, 115–119.PubMedCrossRefGoogle Scholar
  2. 2.
    Choudhury, R., Panda, S., and Singh, D. V. (2012) Emergence and dissemination of antibiotic resistance: a global problem, Ind. J. Med. Microbiol., 30, 384–390.CrossRefGoogle Scholar
  3. 3.
    Echols, R. M. (2012) A long and winding road; evolution of antimicrobial drug development — crisis management, Expert Rev. Anti Infect. Ther., 10, 1311–1319.PubMedCrossRefGoogle Scholar
  4. 4.
    Ghafur, A. (2013) The Chennai declaration: a solution to the antimicrobial resistance problem in the Indian subcontinent, Clin. Infect. Dis., 56, 1190.PubMedCrossRefGoogle Scholar
  5. 5.
    Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms, Nature, 415, 389–395.PubMedCrossRefGoogle Scholar
  6. 6.
    Samy, R. P., Gopalakrishnakone, P., Stiles, B. G., Girish, K. S., Swamy, S. N., Hemshekhar, M., Tan, K. S., Rowan, E. G., Sethi, G., and Chow, V. T. (2012) Snake venom phospholipases A2: a novel tool against bacterial diseases, Curr. Med. Chem., 19, 6150–6162.PubMedCrossRefGoogle Scholar
  7. 7.
    Perumal Samy, R., Pachiappan, A., Gopalakrishnakone, P., Thwin, M. M., Hian, Y. E., Chow, V. T., Bow, H., and Weng, J. T. (2006) In vitro antimicrobial activity of natural proteins and animal venoms tested against Burkholderia pseudomallei, BMC Infect. Dis., 6, 1–16.CrossRefGoogle Scholar
  8. 8.
    Kini, R. M. (1997) Phospholipase A2: a complex multifunctional protein puzzle, in Venom Phospholipase A 2 Enzymes: Structure, Function and Mechanism (Kini, R. M., ed.) John Wiley & Sons, Chichester, U. K.Google Scholar
  9. 9.
    Gutierrez, J. M., and Lomonte, B. (2013) Phospholipase A2: unveiling the secrets of a functionally versatile group of snake venom toxins, Toxicon, 62, 27–39.PubMedCrossRefGoogle Scholar
  10. 10.
    Soares, A. M., Mancin, A. C., Cecchini, A. L., Arantes, E. C., Franca, S. C., Gutierrez, J. M., and Giglio, J. R. (2001) Effects of chemical modifications of croprotein B, the phospholipase A2 subunit of croprotein from Crotalus durissus terrificus snake venom, on its enzymatic and pharmacological activities, Int. J. Biochem. Cell Biol., 33, 877–888.PubMedCrossRefGoogle Scholar
  11. 11.
    Toyama, M. H., de Oliveira, D. G., Beriam, L. O. S., Novello, J. C., Rodrigues-Simioni, L., and Marangoni, S. (2003) Structural, enzymatic and biological properties of new PLA2 isoform from Crotalus durissus terrificus venom, Toxicon, 41, 1033–1038.PubMedCrossRefGoogle Scholar
  12. 12.
    Sampaio, S. C., Brigatte, P., Sousa-e-Silva, M. C. C., dos-Santos, E. C., Rangel-Santos, A. C., Rangel-Santos, A. C., Curi, R., and Cury, Y. (2003) Contribution of croprotein for the inhibitory effect of Crotalus durissus terrificus snake venom on macrophage function, Toxicon, 41, 899–907.PubMedCrossRefGoogle Scholar
  13. 13.
    Paramo, L., Lomonte, B., Pizarro-Cerda, J., Bengoechea, J. A., Gorvel, J. P., and Moreno, E. (1998) Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom: synthetic Lys49 myotox- in II-(115e129)-peptide identifies its bactericidal region, Eur. J. Biochem., 253, 452–461.PubMedCrossRefGoogle Scholar
  14. 14.
    Vargas, L. J., Londono, M., Quintana, J. C., Rua, C., Segura, C., Lomonte, B., and Nunez, V. (2012) An acidic phospholipase A2 with antibacterial activity from Porthidium nasutum snake venom, Comp. Biochem. Physiol. B, 161, 341–347.PubMedCrossRefGoogle Scholar
  15. 15.
    Soares, A. M., Andriao-Escarso, S. H., Bortoleto, R. K., Rodrigues-Simioni, L., Arni, R. K., Ward, R. J., Gutierrez, J. M., and Giglio, J. R. (2001) Dissociation of enzymatic and pharmacological properties of piratoxins-I and -III, two myotoxic phospholipases A2 from Bothrops pirajai snake venom, Arch. Biochem. Biophys., 387, 188–196.PubMedCrossRefGoogle Scholar
  16. 16.
    Nair, D. G., Fry, B. G., Alewood, P., Kumar, P. P., and Kini, R. M. (2007) Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins, Biochem. J., 402, 93–104.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Perumal Samy, R., Gopalakrishnakone, P., Bow, H., Puspharaj, P. N., and Chow, V. T. (2010) Identification and characterization of a phospholipase A2 from the venom of the saw-scaled viper: novel bactericidal and membrane damaging activities, Biochimie, 92, 1854–1866.PubMedCrossRefGoogle Scholar
  18. 18.
    Pereira, H. A. (2006) Novel therapies based on cationic antimicrobial peptides, Curr. Pharm. Biotechnol., 7, 292–234.Google Scholar
  19. 19.
    De Oliveira, N. G., Jr., e Silva Cardoso, M. H., and Franco, O. L. (2013) Snake venoms: attractive antimicrobial proteinaceous compounds for therapeutic purposes, Cell Mol. Life Sci., 70, 4645–4658.CrossRefGoogle Scholar
  20. 20.
    Jayanthi, G. P., and Gowda, T. V. (1988) Geographical variation in India in the composition and lethal potency of Russell’s viper (Vipera russelli) venom, Toxicon, 26, 257–264.PubMedCrossRefGoogle Scholar
  21. 21.
    Woodhams, B. J., Wilson, S. E., Xin, B. C., and Hutton, R. A. (1990) Differences between the venoms of two sub-species of Russell’s viper: Vipera russelli pulchella and Vipera russelli siamensis, Toxicon, 28, 427–433.PubMedCrossRefGoogle Scholar
  22. 22.
    Prasad, N. B., Uma, B., Bhatt, S. K., and Gowda, V. T. (1999) Comparative characterization of Russell’s viper (Daboia/Vipera russelli) venoms from different regions of the Indian peninsula, Biochim. Biophys. Acta, 1428, 121–136.PubMedCrossRefGoogle Scholar
  23. 23.
    Dhananjaya, B. L., Zameer, F., Girish, K. S., and D’Souza, C. J. (2011) Anti-venom potential of aqueous extract of stem bark of Mangifera indica L. against Daboia russelii (Russell’s viper) venom, Ind. J. Biochem. Biophys., 48, 175–183.Google Scholar
  24. 24.
    Venkatesh, M., Prasad, N., Sing, T., and Gowda, V. (2013) Purification, characterization, and chemical modification of neurotoxic peptide from Daboia russelii snake venom of India, J. Biochem. Mol. Toxicol., 27, 295–304.PubMedCrossRefGoogle Scholar
  25. 25.
    Perumal Samy, R., Gopalakrishnakone, P., Thwin, M. M., Chow, T. K., Bow, H., Yap, E. H., and Thong, T. W. (2007) Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase enzymes, J. Appl. Microbiol., 102, 650–659.PubMedCrossRefGoogle Scholar
  26. 26.
    Kasturi, S., and Gowda, T. V. (1989) Purification and characterization of a major phospholipase A2 from Russell’s viper (Vipera russelli) venom, Toxicon, 27, 229–237.PubMedCrossRefGoogle Scholar
  27. 27.
    Srinivasan, S. (2004) Mechanism of Action of Snake Venom Toxic Phospholipases, Thesis, University of Mysore.Google Scholar
  28. 28.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  29. 29.
    Condrea, E., Fletcher, J. E., Rapuano, B. E., Yang, C. C., and Rosenberg, P. (1981) Effect of modification of one histidine residue on the enzymatic and pharmacological properties of a toxic phospholipase A2 from Naja nigricollis snake venom and less toxic phospholipases A2 from Haemachatus haemachatus and Naja naja atra snake venoms, Toxicon, 19, 61–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Bhat, M. K., and Gowda, T. V. (1989) Purification and characterization of a myotoxic phospholipase A2 from Indian cobra (Naja naja naja) venom, Toxicon, 27, 861–873.PubMedCrossRefGoogle Scholar
  31. 31.
    Boman, H. G., and Kaletta, U. (1957) Chromatography of rattle snake venom, a separation of three phosphodiesterases, Biochim. Biophys. Acta, 24, 619–631.PubMedCrossRefGoogle Scholar
  32. 32.
    Forbes, B. A., Sahm, D. F., Weissfeld, A. S., and Trevino, E. A. (1990) in Bailey and Scott’s Diagnostics Microbiology (Baron, E. J., Petrson, L. R., and Finegold, S. M., eds.) Mosby Co., St. Louis, Missouri, pp. 171–194.Google Scholar
  33. 33.
    Prescot, L. M., Harley, J. P., and Klein, D. A. (1996) Introduction to Microbiology, 5th Edn., The Benjamin Cummins Publishing Co. Inc., pp. 681–684.Google Scholar
  34. 34.
    Buckland, A., and Wilton, D. (2000) The antibacterial properties of secreted phospholipases A2, Biochim. Biophys. Acta, 1488, 71–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Rudrammaji, L. M., Machiah, K. D., Kantha, T. P., and Gowda, T. V. (2001) Role of catalytic function in the antiplatelet activity of phospholipase A2 cobra (Naja naja naja) venom, Mol. Cell Biochem., 219, 39–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Park, C. B., Kim, H. S., and Kim, S. C. (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions, Biochem. Biophys. Res. Commun., 244, 253–257.PubMedCrossRefGoogle Scholar
  37. 37.
    Shen, Z., and Cho, W. (1995) Highly efficient immobilization of phospholipase A2 and its biomedical applications, J. Lipid Res., 36, 1147–1151.PubMedGoogle Scholar
  38. 38.
    Saikia, D., Bordoloi, N. K., Chattopadhyay, P., Choklingam, S., Ghosh, S. S., and Mukherjee, A. K. (2012) Differential mode of attack on membrane phospholipids by an acidic phospholipase A2 (RVVA-PLA2-I) from Daboia russelli venom, Biochim. Biophys. Acta, 1818, 3149–3157.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Venom Research UnitAdichunchanagiri Biotechnology and Cancer Research Institute (ABCRI)Mandya DistrictIndia
  2. 2.Toxinology/Toxicology and Drug Discovery Unit, Center for Emerging Technologies, Jain Global CampusJain UniversityKanakapura Taluk, RamanagaraIndia

Personalised recommendations