Biochemistry (Moscow)

, Volume 79, Issue 11, pp 1183–1191 | Cite as

Properties of hybrid hybrid complexes composed of photosynthetic reaction centers from the purple bacterium Rhodobacter sphaeroides and quantum dots in lecithin liposomes

  • V. E. Zagidullin
  • E. P. LukashevEmail author
  • P. P. Knox
  • N. Kh. Seifullina
  • O. S. Sokolova
  • E. V. Pechnikova
  • H. Lokstein
  • V. Z. Paschenko


Quantum dots (QDs) can absorb ultraviolet and long-wavelength light energy much more efficiently than natural light-harvesting proteins and transfer the excitation energy to photosynthetic reaction centers (RCs). Inclusion into liposomes of RC membrane pigment-protein complexes combined with QDs as antennae opens new opportunities for using such hybrid systems as a basis for artificial energy-transforming devices that potentially can operate with greater efficiency and stability than devices based only on biological components. RCs from Rhodobacter sphaeroides and QDs with fluorescence maximum at 530 nm (CdSe/ZnS with hydrophilic covering) were embedded in lecithin liposomes by extrusion of a solution of multilayer lipid vesicles through a polycarbonate membrane or by dialysis of lipids and proteins dispersed with excess detergent. The dimensions of the resulting hybrid systems were evaluated using dynamic light scattering and by transmission cryoelectron microscopy. The efficiency of RC and QD interaction within the liposomes was estimated using fluorescence excitation spectra of the photoactive bacteriochlorophyll of the RCs and by measuring the fluorescence decay kinetics of the QDs. The functional activity of the RCs in hybrid complexes was fully maintained, and their stability was even increased.

Key words

purple bacteria photosynthetic reaction center quantum dots liposomes energy transfer 







detergent- and dialysis-based method of liposomes preparation


photosynthetic reaction center


quantum dots


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hu, X., Ritz, T., Damjanovic, A., Autenrieth, F., and Schulten, K. (2002) Photosynthetic apparatus of purple bacteria, Quart. Rev. Biophys., 35, 1–62.CrossRefGoogle Scholar
  2. 2.
    Yoder, L. M., Cole, A. G., and Sension, R. J. (2002) Structure and function in the isolated reaction center complex of photosystem II: energy and charge transfer dynamics and mechanism, Photosynth. Res., 72, 147–158.PubMedCrossRefGoogle Scholar
  3. 3.
    Busch, A., and Hippler, M. (2011) The structure and function of eukaryotic photosystem I, Biochim. Biophys. Acta, 1807, 864–877.PubMedCrossRefGoogle Scholar
  4. 4.
    McConnell, I., Li, G., and Brudvig, G. W. (2010) Energy conversion in natural and artificial photosynthesis, Chem. Biol., 17, 434–447.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Leatherdale, C. A., Woo, W.-K., Mikulec, F. V., and Bawendi, M. G. (2002) On the absorption cross section of CdSe nanocrystal quantum dots, J. Phys. Chem. B, 106, 7619–7622.CrossRefGoogle Scholar
  6. 6.
    Oleynikov, V. A., Sukhanova, A. V., and Nabiev, I. R. (2007) Fluorescent semiconductor nanocrystals for biology and medicine, Ros. Nanotekhnol., 2, 160–173.Google Scholar
  7. 7.
    Micic, O. I., Cheong, H. M., Fu, H., Zunger, A., Sprague, J. R., Mascarenhas, A., and Nozik, A. J. (1997) Sizedependent spectroscopy of InP quantum dots, J. Phys. Chem. B, 101, 4904–4912.CrossRefGoogle Scholar
  8. 8.
    Gerion, D., Pinaud, F., Williams, S. C., Parak, W. J., Zanchet, D., Weiss, S., and Alivisatos, A. P. (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, J. Phys. Chem. B, 105, 8861–8871.CrossRefGoogle Scholar
  9. 9.
    Pons, T., Medintz, I. L., Sapsford, K. E., Higashiya, S., Grimes, A. F., English, D. S., and Mattoussi, H. (2007) On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles, Nano Lett., 7, 3157–3164.PubMedCrossRefGoogle Scholar
  10. 10.
    Medintz, I. L., and Mattoussi, H. (2009) Quantum dotbased resonance energy transfer and its growing application in biology, Phys. Chem. Chem. Phys., 11, 17–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Nabiev, I., Rakovich, A., Sukhanova, A., Lukashev, E., Zagidullin, V., Paschenko, V., Rakovich, Y. P., Donegan, J. F., Rubin, A. B., and Govorov, A. O. (2010) Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers, Angew. Chem., 49, 7217–7221.CrossRefGoogle Scholar
  12. 12.
    Maksimov, E. G., Lukashev, E. P., Seifullina, N. Kh., Nizova, G. V., and Paschenko, V. Z. (2013) Photophysical properties of hybrid complexes consisting of quantum dots and reaction centers of the purple photosynthetic bacteria Rhodobacter sphaeroides adsorbed on crystalline mesoporous TiO2 films, Ros. Nanotekhnol., 8, 11–17.Google Scholar
  13. 13.
    Borissevitch, I. E., Parra, G. G., Zagidullin, V. E., Lukashev, E. P., Knox, P. P., Paschenko, V. Z., and Rubin, A. B. (2013) Cooperative effects in CdSe/ZnS-PEGOH quantum dot luminescence quenching by a water soluble porphyrin, J. Luminesc., 134, 83–87.CrossRefGoogle Scholar
  14. 14.
    Gennis, P. (1997) Biomembranes: Molecular Structure and Functions [Russian translation], Mir, Moscow.Google Scholar
  15. 15.
    Nyholm, T. K. M., Ozdirekcan, S., and Killian, J. A. (2007) How protein transmembrane segments sense the lipid environment, Biochemistry, 46, 1457–1465.PubMedCrossRefGoogle Scholar
  16. 16.
    Sandermannr, H., Jr. (1978) Regulation of membrane enzymes by lipids, Biochim. Biophys. Acta, 515, 209–237.CrossRefGoogle Scholar
  17. 17.
    Latruffe, N., Berrez, J. M., and el Kebbaj, M. S. (1986) Lipid-protein interactions in biomembranes studied through the phospholipids specificity of D-beta-hydroxybutyrate dehydrogenase, Biochimie, 68, 481–491.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee, S. Y., Lee, A., Chen, J. Y., and MacKinnon, R. (2005) Structure of the KvAP voltage-dependent K+-channel and its dependence on the lipid membrane, Proc. Natl. Acad. Sci. USA, 102, 15441–15446.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Onishi, J. C., and Niederman, P. (1982) Rhodopseudomonas sphaeroides membranes: alterations in phospholipid composition in aerobically and phototrophically grown cells, J. Bacteriol., 149, 831–839.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Benning, C. (2004) Membrane lipids in anoxygenic photosynthetic bacteria, Adv. Photosynth. Respir., 6, 83–101.CrossRefGoogle Scholar
  21. 21.
    Camara-Artigas, A., Brune, D., and Allen, J. P. (2002) Interactions between lipids and bacterial reaction centers determined by crystallography, Proc. Natl. Acad. Sci. USA, 99, 11055–11060.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Agostiano, A., Milano, F., and Trotta, M. (2005) Trapping of a long-living charge separated state of photosynthetic reaction centers in proteoliposomes of negatively charged phospholipids, Photosynth. Res., 83, 53–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Milano, F., Dorogi, M., Szebenyi, K., Nagy, L., Maroti, P., Varo, G., Giotta, L., Agostiano, A., and Trotta, M. (2007) Enthalpy/entropy driven activation of the first interquinone electron transfer in bacterial photosynthetic reaction centers embedded in vesicles of physiologically important phospholipids, Bioelectrochemistry, 70, 18–22.PubMedCrossRefGoogle Scholar
  24. 24.
    Berg, A. I., Knox, P. P., Kononenko, A. A., Frolov, E. N., Khrymova, I. N., Rubin, A. B., Likhtenstein, G. I., Goldansky, V. I., Parak, F., Bukl, M., and Messbauer, P. (1979) Conformational regulation of functional activity in photosynthetic membranes of purple bacteria, Mol. Biol., 13, 81–89.Google Scholar
  25. 25.
    Kotelnikov, A. I., Likhtenstein, G. I., Fogel, V. R., Kochetkov, V. V., Knox, P. P., Kononenko, A. A., Grishanova, N. P., and Rubin, A. B. (1983) Intramolecular dynamics and electron transfer in photosynthetic reaction centers. The study by luminescence method, Mol. Biol., 17, 846–855.Google Scholar
  26. 26.
    Kononenko, A. A., Knox, P. P., Chamorovsky, S. K., Rubin, A. B., Likhtenstein, G. I., Krupyansky, Y. F., Suzdalev, I. P., and Goldansky, V. I. (1986) Electron transfer and intramolecular dynamics of photosynthetic reaction centers, Khim. Fiz., 5, 795–804.Google Scholar
  27. 27.
    Zakharova, N. I., and Churbanova, I. Y. (2000) Methods for preparation of reaction centers of photosynthesizing purple bacteria, Biochemistry (Moscow), 65, 149–159.Google Scholar
  28. 28.
    Bellare, J. R., Davis, H. T., Scriven, L. E., and Talmon, Y. (1988) Controlled environment vitrification system: an improved sample preparation technique, J. Electron Microsc. Tech., 10, 87–111.PubMedCrossRefGoogle Scholar
  29. 29.
    Frederik, P. M., Stuart, M. C., Bomans, P. H., Busing, W. M., Burger, K. N., and Verkleij, A. J. (1991) Perspective and limitations of cryo-electron microscopy. From model systems to biological specimens, J. Microsc., 161, 253–262.PubMedCrossRefGoogle Scholar
  30. 30.
    Milano, F., Italiano, F., Trotta, M., and Agostiano, A. (2009) Characterization of RC-proteoliposomes at different RC/lipid ratios, Photosynth. Res., 100, 107–112.PubMedCrossRefGoogle Scholar
  31. 31.
    Iba, K., Takamiya, K., Arata, H., Toh, Y., and Nishimura, M. (1984) Transmembrane orientation of reaction centers in proteoliposomes from Rhodopseudomonas sphaeroides, J. Biochem., 96, 1823–1830.PubMedGoogle Scholar
  32. 32.
    Shan, G.-Y., Li, D., Feng, L.-Y., Kong, X.-G., Liu, Y.-C., Bai, Y.-B., Li, T.-J., and Sun, J.-Z. (2005) Encapsulation of CdSe/ZnSe quantum dots by liposome complexes, Chin. J. Chem., 23, 1688–1692.CrossRefGoogle Scholar
  33. 33.
    Al-Jamal, W. T., Al-Jamal, K. T., Bomans, P. H., Frederik, P. M., and Kostarelos, K. (2008) Functionalized-quantumdot-liposome hybrids as multimodal nanoparticles for cancer, Small, 4, 1406–1415.PubMedCrossRefGoogle Scholar
  34. 34.
    Generalov, R., Kavaliauskiene, S., Westrom, S., Chen, W., Kristensen, S., and Juzenas, P. (2011) Entrapment in phospholipid vesicles quenches photoactivity of quantum dots, Int. J. Nanomed., 6, 1875–1888.Google Scholar
  35. 35.
    Lancaster, C. R. D., Michel, H., Honig, B., and Gunner, M. R. (1996) Calculated coupling of electron and proton transfer in the photosynthetic reaction center of Rhodopseudomonas viridis, Biophys. J., 70, 2469–2492.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Miksovska, J., Maroti, P., Tandori, J., Schiffer, M., Hanson, D. K., and Sebban, P. (1996) Distant electrostatic interactions modulate the free energy level of QA — in the photosynthetic reaction center, Biochemistry, 35, 15411–15417.PubMedCrossRefGoogle Scholar
  37. 37.
    Paddock, M. L., Rongey, S. H., McPherson, P. H., Juth, A., Feher, G., and Okamura, M. Y. (1994) Pathway of proton transfer in bacterial reaction centers: role of aspartate-L213 in proton transfers associated with reduction of quinone to dihydroquinone, Biochemistry, 33, 134–145.CrossRefGoogle Scholar
  38. 38.
    Lakowicz, J. R. (1999) Principles of Fluorescence Spectroscopy, Kluwer.CrossRefGoogle Scholar
  39. 39.
    Krasilnikov, P. M., Knox, P. P., Lukashev, E. P., Paschenko, V. Z., Churbanova, I. Y., Shaitan, K. V., and Rubin, A. B. (2000) Acceleration of the reaction of photooxidized bacteriochlorophyll and of reduced primary quinone in reaction centers of Rb. sphaeroides at T > 300 K, Dokl. Akad. Nauk, 375, 828–830.Google Scholar
  40. 40.
    Krasilnikov, P. M., Mamonov, P. A., Knox, P. P., Paschenko, V. Z., and Rubin, A. B. (2007) The influence of hydrogen bonds on electron transfer rate in photosynthetic RCs, Biochim. Biophys. Acta, 1767, 541–549.PubMedCrossRefGoogle Scholar
  41. 41.
    Krasilnikov, P. M., Knox, P. P., and Rubin, A. B. (2009) Relaxation mechanism of molecular systems containing hydrogen bonds and free energy temperature dependence of reaction of charges recombination within Rhodobacter sphaeroides RC, Photochem. Photobiol. Sci., 8, 181–195.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. E. Zagidullin
    • 1
  • E. P. Lukashev
    • 1
    Email author
  • P. P. Knox
    • 1
  • N. Kh. Seifullina
    • 1
  • O. S. Sokolova
    • 1
  • E. V. Pechnikova
    • 2
  • H. Lokstein
    • 3
  • V. Z. Paschenko
    • 1
  1. 1.Biology FacultyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Molecular, Cell and Systems Biology, Glasgow Biomedical Research CentreUniversity of GlasgowGlasgowUK

Personalised recommendations