Advertisement

Biochemistry (Moscow)

, Volume 79, Issue 11, pp 1161–1171 | Cite as

Mammalian hibernation and regulation of lipid metabolism: A focus on non-coding RNAs

  • D. Lang-Ouellette
  • T. G. Richard
  • P. MorinJr.Email author
Review

Abstract

Numerous species will confront severe environmental conditions by undergoing significant metabolic rate reduction. Mammalian hibernation is one such natural model of hypometabolism. Hibernators experience considerable physiological, metabolic, and molecular changes to survive the harsh challenges associated with winter. Whether as fuel source or as key signaling molecules, lipids are of primary importance for a successful bout of hibernation and their careful regulation throughout this process is essential. In recent years, a plethora of non-coding RNAs has emerged as potential regulators of targets implicated in lipid metabolism in diverse models. In this review, we introduce the general characteristics associated with mammalian hibernation, present the importance of lipid metabolism prior to and during hibernation, as well as discuss the potential relevance of non-coding RNAs such as miRNAs and lncRNAs during this process.

Key words

hibernation hypometabolism lipid synthesis fatty acid degradation microRNAs long non-coding RNAs 

Abbreviations

lncRNAs

long non-coding RNAs

miRNAs

microRNAs

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lyman, C. P., Willis, J. S., Malan, A., and Wang, L. C. H. (1982) in Hibernation and Torpor in Mammals and Birds, Academic Press, New York.Google Scholar
  2. 2.
    Andrews, M. T. (2004) Genes controlling the metabolic switch in hibernating mammals, Biochem. Soc. Trans., 32, 1021–1024.PubMedGoogle Scholar
  3. 3.
    Storey, K. B., and Storey, J. M. (2004) Metabolic rate depression in animals: transcriptional and translational controls, Biol. Rev. Camb. Philos. Soc., 79, 207–233.PubMedGoogle Scholar
  4. 4.
    Lyons, P. J., Lang-Ouellette, D., and Morin, P. Jr. (2013) CryomiRs: towards the identification of a cold-associated family of microRNAs, Comp. Biochem. Physiol. D, 8, 358–364.Google Scholar
  5. 5.
    Guppy, M., and Withers, P. (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations, Biol. Rev. Camb. Philos. Soc., 74, 1–40.PubMedGoogle Scholar
  6. 6.
    Storey, K. B. (2002) Life in the slow lane: molecular mechanisms of estivation, Comp. Biochem. Physiol. A, 133, 733–754.Google Scholar
  7. 7.
    Jones, R. M. (1980) Metabolic consequences of accelerated urea synthesis during seasonal dormancy of spadefoot toads, Scaphiopus couchi and Scaphiopus multiplicatus, J. Exp. Zool., 212, 255–267.Google Scholar
  8. 8.
    Denlinger, D. L. (2002) Regulation of diapause, Ann. Rev. Entomol., 47, 93–122.Google Scholar
  9. 9.
    Kostal, V., and Simek, P. (2000) Overwintering strategy in Pyrrhocoris apterus (Heteroptera): the relations between life-cycle, chill tolerance and physiological adjustments, J. Insect Physiol., 46, 1321–1329.PubMedGoogle Scholar
  10. 10.
    Michaud, R. M., and Denlinger, D. L. (2006) Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis, J. Insect Physiol., 52, 1073–1082.PubMedGoogle Scholar
  11. 11.
    Geiser, F. (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor, Annu. Rev. Physiol., 66, 239–274.PubMedGoogle Scholar
  12. 12.
    Dark, J. (2005) Annual lipid cycles in hibernators: integration of physiology and behavior, Annu. Rev. Nutr., 25, 469–497.PubMedGoogle Scholar
  13. 13.
    Storey, K. B., and Storey, J. M. (2010) Metabolic rate depression: the biochemistry of mammalian hibernation, Adv. Clin. Chem., 52, 77–108.PubMedGoogle Scholar
  14. 14.
    Carey, H. V., Andrews, M. T., and Martin, S. L. (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature, Physiol. Rev., 83, 1153–1181.PubMedGoogle Scholar
  15. 15.
    Buck, M. J., and Barnes, B. M. (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator, Am. J. Physiol., 279, R255–R262.Google Scholar
  16. 16.
    Milsom, W. K., and Jackson, D. C. (2011) Hibernation and gas exchange, Compr. Physiol., 1, 397–420.PubMedGoogle Scholar
  17. 17.
    Wang, L. C. H., and Wolowyk, M. W. (1988) Torpor in mammals and birds, Can. J. Zool., 66, 133–137.Google Scholar
  18. 18.
    MacDonald, J. A., and Storey, K. B. (1999) Regulation of ground squirrel Na+,K+-ATPase activity by reversible phosphorylation during hibernation, Biochem. Biophys. Res. Commun., 254, 424–429.PubMedGoogle Scholar
  19. 19.
    Van Breukelen, F., and Martin, S. L. (2002) Reversible depression of transcription during hibernation, J. Comp. Physiol. B, 172, 355–361.PubMedGoogle Scholar
  20. 20.
    Brooks, S. P. J., and Storey, K. B. (1992) Mechanisms of glycolytic control during hibernation in the ground squirrel Spermophilus lateralis, J. Comp. Physiol., 162, 23–28.Google Scholar
  21. 21.
    Rider, M. H., Hussain, N., Dilworth, S. M., Storey, J. M., and Storey, K. B. (2011) AMP-activated protein kinase and metabolic regulation in cold-hardy insects, J. Insect Physiol., 57, 1453–1462.PubMedGoogle Scholar
  22. 22.
    Lee, Y. J., Miyake, S., Wakita, H., McMullen, D. C., Azuma, Y., Auh, S., and Hallenbeck, J. M. (2007) Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells, J. Cereb. Blood Flow Metab., 27, 950–962.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Velickovska, V., and van Breukelen, F. (2007) Ubiquitylation of proteins in livers of hibernating goldenmantled ground squirrels, Spermophilus lateralis, Cryobiology, 55, 230–235.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Frerichs, K. U., Smith, C. B., Brenner, M., DeGracia, D. J., Krause, G. S., Marrone, L., Dever, T. E., and Hallenbeck, J. M. (1998) Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation, Proc. Natl. Acad. Sci. USA, 95, 14511–14516.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Osborne, P. G., Gao, B., and Hashimoto, M. (2004) Determination in vivo of newly synthesized gene expression in hamsters during phases of the hibernation cycle, Jpn. J. Physiol., 54, 295–305.PubMedGoogle Scholar
  26. 26.
    Wu, C. B., and Storey, K. B. (2012) Regulation of the mTOR signaling network in hibernating thirteen-lined ground squirrels, J. Exp. Biol., 215, 1720–1727.PubMedGoogle Scholar
  27. 27.
    Mrosovsky, N., and Boshes, M. (1986) Meal patterns and food intakes of ground squirrels during circannual cycles, Appetite, 7, 163–175.PubMedGoogle Scholar
  28. 28.
    Mostafa, N., Everett, D. C., Chou, S. C., Kong, P. A., Florant, G. L., and Coleman, R. A. (1993) Seasonal changes in critical enzymes of lipogenesis and triacylglycerol synthesis in the marmot (Marmota flaviventris), J. Comp. Physiol. B, 163, 463–469.PubMedGoogle Scholar
  29. 29.
    Wang, P., Walter, R. D., Bhat, B. G., Florant, G. L., and Coleman, R. A. (1997) Seasonal changes in enzymes of lipogenesis and triacylglycerol synthesis in the goldenmantled ground squirrel (Spermophilus lateralis), Comp. Biochem. Physiol. B, 118, 261–267.PubMedGoogle Scholar
  30. 30.
    Healy, J. E., Gearhart, C. N., Bateman, J. L., Handa, R. J., and Florant, G. L. (2011) AMPK and ACC change with fasting and physiological condition in euthermic and hibernating golden-mantled ground squirrels (Callospermophilus lateralis), Comp. Biochem. Physiol. A, 159, 322–331.Google Scholar
  31. 31.
    Kabine, M., Clemencet, M. C., Bride, J., El Kebbaj, M. S., Latruffe, N., and Cherkaoui-Malki, M. (2003) Changes of peroxisomal fatty acid metabolism during cold acclimatization in hibernating jerboa (Jaculus orientalis), Biochimie, 85, 707–714.PubMedGoogle Scholar
  32. 32.
    Florant, G. L., Nuttle, L. C., Mullinex, D. E., and Rintoul, D. A. (1990) Plasma and white adipose tissue lipid composition in marmots, Am. J. Physiol., 258, R1123–1131.PubMedGoogle Scholar
  33. 33.
    Wilson, B. E., Deeb, S., and Florant, G. L. (1992) Seasonal changes in hormone-sensitive and lipoprotein lipase mRNA concentrations in marmot white adipose tissue, Am. J. Physiol., 262, R177–181.PubMedGoogle Scholar
  34. 34.
    Munro, D., and Thomas, D. W. (2004) The role of polyunsaturated fatty acids in the expression of torpor by mammals: a review, Zoology (Jena), 107, 29–48.Google Scholar
  35. 35.
    Bell, M. V., Henderson, R. J., and Sargent, J. R. (1986) The role of polyunsaturated fatty acids in fish, Comp. Biochem. Physiol. B, 83, 711–719.PubMedGoogle Scholar
  36. 36.
    Frank, C. L. (1991) Adaptations for hibernation in the depot fats of a ground squirrel (Spermophilus beldingi), Can. J. Zool., 69, 2707–2711.Google Scholar
  37. 37.
    Wahli, W., and Michalik, L. (2012) PPARs at the crossroads of lipid signaling and inflammation, Trends Endocrinol. Metab., 23, 351–363.PubMedGoogle Scholar
  38. 38.
    Martin, S. L., Epperson, L. E., Rose, J. C., Kurtz, C. C., Ane, C., and Carey, H. V. (2008) Proteomic analysis of the winter-protected phenotype of hibernating ground squirrel intestine, Am. J. Physiol. Regul. Integr. Comp. Physiol., 295, R316–R328.PubMedGoogle Scholar
  39. 39.
    Andrews, M. T., Squire, T. L., Bowen, C. M., and Rollins, M. B. (1998) Low-temperature carbon utilization is regulated by novel gene activity in the heart of a hibernating mammal, Proc. Natl. Acad. Sci. USA, 95, 8392–8397.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Eddy, S. F., and Storey, K. B. (2003) Differential expression of Akt, PPARγ, and PGC-1 during hibernation in bats, Biochem. Cell Biol., 81, 269–274.PubMedGoogle Scholar
  41. 41.
    Kabine, M., El Kebbaj, Z., Oaxaca-Castillo, D., Clemencet, M. C., El Kebbaj, M. S., Latruffe, N., and Cherkaoui-Malki, M. (2004) Peroxisome proliferator-activated receptors as regulators of lipid metabolism; tissue differential expression in adipose tissues during cold acclimatization and hibernation of jerboa (Jaculus orientalis), Biochimie, 86, 763–770.PubMedGoogle Scholar
  42. 42.
    Eddy, S. F., Morin, P. Jr., and Storey, K. B. (2005) Cloning and expression of PPAR-γ and PGC-1α from the hibernating ground squirrel, Spermophilus tridecemlineatus, Mol. Cell. Biochem., 269, 175–182.PubMedGoogle Scholar
  43. 43.
    El Kebbaj, Z., Andreoletti, P., Mountassif, D., Kabine, M., Schohn, H., Dauca, M., Latruffe, N., El Kebbaj, M. S., and Cherkaoui-Malki, M. (2009) Differential regulation of peroxisome proliferator-activated receptor (PPAR)-α1 and truncated PPARα2 as an adaptive response to fasting in the control of hepatic peroxisomal fatty acid β-oxidation in the hibernating mammal, Endocrinology, 150, 1192–1201.PubMedGoogle Scholar
  44. 44.
    Ishida, N. (2009) Role of PPARα in the control of torpor through FGF21-NPY pathway: from circadian clock to seasonal change in mammals, PPAR Res., 2009, 412949.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Colin, S., Bourguignon, E., Boullay, A. B., Tousaint, J. J., Huet, S., Caira, F., Staels, B., Lestavel, S., Lobaccaro, J. M., and Delerive, P. (2008) Intestine-specific regulation of PPARα gene transcription by liver X receptors, Endocrinology, 149, 5128–5135.PubMedGoogle Scholar
  46. 46.
    Russom, J. M., Guba, G. R., Sanchez, D., Tam, C. F., Lopez, G. A., and Garcia, R. E. (1992) Plasma lipoprotein cholesterol concentrations in the golden-mantled ground squirrel (Spermophilus lateralis): a comparison between prehibernators and hibernators, Comp. Biochem. Physiol. B, 102, 573–578.PubMedGoogle Scholar
  47. 47.
    Kolomiytseva, I. K., Perepelkina, N. I., Zharikova, A. D., and Popov, V. I. (2008) Membrane lipids and morphology of brain cortex synaptosomes isolated from hibernating Yakutian ground squirrel, Comp. Biochem. Physiol. B, 151, 386–391.PubMedGoogle Scholar
  48. 48.
    Green, C. B., Takahashi, J. S., and Bass, J. (2008) The meter of metabolism, Cell, 134, 728–742.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Nelson, C. J., Otis, J. P., Martin, S. L., and Carey, H. V. (2009) Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver, Physiol. Genom., 37, 43–51.Google Scholar
  50. 50.
    Krol, J., Loedige, I., and Filipowicz, W. (2010) The widespread regulation of microRNA biogenesis, function and decay, Nat. Rev. Genet., 11, 597–610.PubMedGoogle Scholar
  51. 51.
    Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions, Cell, 136, 215–233.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Friedman, R. C., Farh, K. K., Burge, C. B., and Bartel, D. P. (2009) Most mammalian mRNAs are conserved targets of microRNAs, Genome Res., 19, 92–105.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Reynolds, J. A., Clark, J., Diakoff, S. J., and Denlinger, D. L. (2013) Transcriptional evidence for small RNA regulation of pupal diapause in the flesh fly, Sarcophaga bullata, Insect Biochem. Mol. Biol., 43, 982–989.PubMedGoogle Scholar
  54. 54.
    Chen, M., Zhang, X., Liu, J., and Storey, K. B. (2013) High-throughput sequencing reveals differential expression of miRNAs in intestine from sea cucumber during aestivation, PloS One, 8, e76120.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Courteau, L. A., Storey, K. B., and Morin, P. Jr. (2012) Differential expression of microRNA species in a freeze tolerant insect, Eurosta solidaginis, Cryobiology, 65, 210–214.PubMedGoogle Scholar
  56. 56.
    Lyons, P. J., Poitras, J. J., Courteau, L. A., Storey, K. B., and Morin, P. Jr. (2013) Identification of differentially regulated microRNAs in cold-hardy insects, Cryo Lett., 34, 83–89.Google Scholar
  57. 57.
    Biggar, K. K., Dubuc, A., and Storey, K. (2009) MicroRNA regulation below zero: differential expression of miRNA-21 and miRNA-16 during freezing in wood frogs, Cryobiology, 59, 317–321.PubMedGoogle Scholar
  58. 58.
    Zhang, J., and Storey, K. B. (2012) Akt signaling and freezing survival in the wood frog, Rana sylvatica, Biochim. Biophys. Acta, 1830, 4828–4837.Google Scholar
  59. 59.
    Biggar, K. K., Kornfeld, S. F., Maistrovski, Y., and Storey, K. B. (2012) MicroRNA regulation in extreme environments: differential expression of microRNAs in the intertidal snail Littorina littorea during extended periods of freezing and anoxia, Genom. Proteom. Bioinform., 10, 302–309.Google Scholar
  60. 60.
    Morin, P. Jr., Dubuc, A., and Storey, K. B. (2008) Differential expression of microRNA species in organs of hibernating ground squirrels: a role in translational suppression during torpor, Biochim. Biophys. Acta, 1779, 628–633.PubMedGoogle Scholar
  61. 61.
    Kornfeld, S. F., Biggar, K. K., and Storey, K. B. (2012) Differential expression of mature microRNAs involved in muscle maintenance of hibernating little brown bats, Myotis lucifugus: a model of muscle atrophy resistance, Genom. Proteom. Bioinform., 10, 295–301.Google Scholar
  62. 62.
    Biggar, K. K., and Storey, K. B. (2014) Identification and expression of microRNA in the brain of hibernating bats, Myotis lucifugus, Gene, 544, 67–74.PubMedGoogle Scholar
  63. 63.
    Liu, Y., Hu, W., Wang, H., Lu, M., Shao, C., Menzel, C., Yan, Z., Li, Y., Zhao, S., Khaitovich, P., Liu, M., Chen, W., Barnes, B. M., and Yan, J. (2010) Genomic analysis of miRNAs in an extreme mammalian hibernator, the Arctic ground squirrel, Physiol. Genom., 42A, 39–51.Google Scholar
  64. 64.
    Maistrovski, Y., Biggar, K. K., and Storey, K. B. (2012) HIF-1α regulation in mammalian hibernators: role of noncoding RNA in HIF-1α control during torpor in ground squirrels and bats, J. Comp. Physiol. B, 182, 849–859.PubMedGoogle Scholar
  65. 65.
    Lee, Y. J., Johnson, K. R., and Hallenbeck, J. M. (2012) Global protein conjugation by ubiquitin-like-modifiers during ischemic stress is regulated by microRNAs and confers robust tolerance to ischemia, PLoS One, 7, e47787.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Davalos, A., Goedeke, L., Smibert, P., Ramirez, C. M., Warrier, N. P., Andreo, U., Cirera-Salinas, D., Rayner, K., Suresh, U., Pastor-Pareja, J. C., Esplugues, E., Fisher, E. A., Penalva, L. O. F., Moore, K. J., Suarez, Y., Lai, E. C., and Fernandez-Hermando, C. (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling, Proc. Natl. Acad. Sci. USA, 108, 9232–9237.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Turczynska, K. M., Bhattachariya, A., Sall, J., Goransson, O., Sward, K., Hellstrand, P., and Albinsson, S. (2013) Stretch-sensitive down-regulation of the miR-144/451 cluster in vascular smooth muscle and its role in AMP-activated protein kinase signaling, PLoS One, 8, e65135.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Chang, F., Zhang, L. H., Xu, W. P., Jing, P., and Zhan, P. Y. (2014) microRNA-9 attenuates amyloid-β-induced synaptotoxicity by targeting calcium/calmodulin-dependent protein kinase kinase 2, Mol. Med. Rep., 9, 1917–1922.PubMedGoogle Scholar
  69. 69.
    Lee, G. C., Kim, Y. W., Kim, E. H., Meng, Z., Huang, W., Hwang, S. J., and Kim, S. G. (2012) Farnesoid X receptor protects hepatocytes from injury by repressing miR-199a-3p, which increases levels of LKB1, Gastroenterology, 145, 1206–1217.Google Scholar
  70. 70.
    Belke, D. D., Wang, L. C., and Lopaschuk, G. D. (1998) Acetyl-CoA carboxylase control of fatty acid oxidation in hearts from hibernating Richardson’s ground squirrels, Biochim. Biophys. Acta, 1391, 25–36.PubMedGoogle Scholar
  71. 71.
    Lang-Ouellette, D., and Morin, P. Jr. (2014) Differential expression of miRNAs with metabolic implications in hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus, Mol. Cell. Biochem., 394, 291–298.PubMedGoogle Scholar
  72. 72.
    Ponomarev, E. D., Veremeyko, T., Barteneva, N., Krichevsky, A. M., and Weiner, H. L. (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway, Nat. Med., 17, 64–70.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Hegde, V. L., Tomar, S., Jackson, A., Rao, R., Yang, X., Singh, N. P., Nagarkatti, P. S., and Nagarkatti, M. (2014) Distinct microRNA expression profile and targeted biological pathways in functional myeloid-derived suppressor cells induced by Δ9-tetrahydrocannabinol in vivo: regulation of CCAAT/enhancer-binding protein α by microRNA-690, J. Biol. Chem., 288, 36810–36826.Google Scholar
  74. 74.
    Ji, J., Zhang, J., Huang, G., Qian, J., Wang, X., and Mei, S. (2009) Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation, FEBS Lett., 583, 759–766.PubMedGoogle Scholar
  75. 75.
    Oda, Y., Nakajima, M., Tsuneyama, K., Takamiya, M., Aoki, Y., Fukami, T., and Yokoi, T. (2014) Retinoid X receptor α in human liver is regulated by miR-34a, Biochem. Pharmacol., 90, 179–187.PubMedGoogle Scholar
  76. 76.
    Adlakha, Y. K., Khanna, S., Singh, R., Singh, V. P., Agrawal, A., and Saini, N. (2013) Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis, Cell Death Dis., 4, e780.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Guerit, D., Philipot, D., Chuchana, P., Toupet, K., Brondello, J. M., Mathieu, M., Jorgensen, C., and Noel, D. (2013) Sox9-regulated miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal stem cells, PLoS One, 8, e62582.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Kim, S. Y., Kim, A. Y., Lee, H. W., Son, Y. H., Lee, G. Y., Lee, J. W., Lee, Y. S., and Kim, J. B. (2010) miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression, Biochem. Biophys. Res. Commun., 392, 323–328.PubMedGoogle Scholar
  79. 79.
    Lee, J. J., Drakaki, A., Iliopoulos, D., and Struhl, K. (2012) MiR-27b targets PPARγ to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells, Oncogene, 31, 3818–3825.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Lee, E. K., Lee M. J., Abdelmohsen, K., Kim, W., Kim, M. M., Srikantan, S., Martindale, J. L., Hutchison, E. R., Kim, H. H., Marasa, B. S., Selimyan, R., Egan, J. M., Smith, S. R., Fried, S. K., and Gorospe, M. (2011) miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression, Mol. Cell. Biol., 31, 626–638.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Chen, Y. H., Heneidi, S., Lee, J. M., Layman, L. C., Stepp, D. W., Gamboa, G. M., Chen, B. S., Chazenbalk, G., and Azziz, R. (2013) miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance, Diabetes, 62, 2278–2286.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Yu, Q. Q., Wu, H., Huang, X., Shen, H., Zhang, B., Xiang, C. C., Yu, S. M., Guo, R. H., and Chen, L. (2014) MiR-1 targets PIK3CA and inhibits tumorigenic properties of A549 cells, Biomed. Pharmacother., 68, 155–161.PubMedGoogle Scholar
  83. 83.
    Hu, R., Pan, W., Fedulov, A. V., Jester, W., Jones, M. R., Weiss, S. T., Panettieri, R. A. J., Tantisira, K., and Lu, Q. (2014) MicroRNA-10a controls airway smooth muscle cell proliferation via direct targeting of the PI3 kinase pathway, FASEB J., 28, 2347–2357.PubMedGoogle Scholar
  84. 84.
    Pandey, A. K., Verma, G., Vig, S., Srivastava, S., Srivastava, A. K., and Datta, M. (2010) miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells, Mol. Cell. Endocrinol., 332, 125–132.PubMedGoogle Scholar
  85. 85.
    Li, J., You, T., and Jing, J. (2014) MiR-125b inhibits cell biological progression of Ewing’s sarcoma by suppressing the PI3K/Akt signaling pathway, Cell. Prolif., 47, 152–160.PubMedGoogle Scholar
  86. 86.
    Guo, C., Sah, J. F., Beard, L., Willson, J. K., Markowitz, S. D., and Guda, K. (2008) The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers, Genes Chromosomes Cancer, 47, 939–946.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Wang, Y., Tang, Q., Li, M., Jiang, S., and Wang, X. (2014) MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA, Biochem. Biophys. Res. Commun., 444, 199–204.PubMedGoogle Scholar
  88. 88.
    Yang, Y., Liu, L., Zhang, Y., Guan, H., Wu, J., Zhu, X., Yuan, J., and Li, M. (2014) MiR-503 targets PI3K p85 and IKK-β and suppresses progression of non-small cell lung cancer, Int. J. Cancer, 135, 1531–1542.PubMedGoogle Scholar
  89. 89.
    Jeong, H. J., Park, S. Y., Yang, W. M., and Lee, W. (2013) The induction of miR-96 by mitochondrial dysfunction causes impaired glycogen synthesis through translational repression of IRS-1 in SK-Hep1 cells, Biochem. Biophys. Res. Commun., 434, 503–508.PubMedGoogle Scholar
  90. 90.
    Zhou, Y., Feng, X., Liu, Y. L., Ye, S. C., Wang, H., Tan, W. K., Tian, T., Qiu, Y. M., and Luo, H. S. (2013) Down-regulation of miR-126 is associated with colorectal cancer cells proliferation, migration and invasion by targeting IRS-1 via the AKT and ERK1/2 signaling pathways, PLoS One, 8, e81203.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Motohashi, N., Alexander, M. S., Shimizu-Motohashi, Y., Myers, J. A., Kawahara, G., and Kunkel, L. M. (2013) Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis, J. Cell Sci., 126, 2678–2691.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Karolina, D. S., Armugam, A., Tavintharan, S., Wong, M. T., Lim, S. C., Sum, C. F., and Jeyaseelan, K. (2011) MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus, PLoS One, 6, e22839.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Wang, Y., Hu, C., Cheng, J., Chen, B., Ke, Q., Lv, Z., Wu, J., and Zhou, Y. (2014) MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling, Biochem. Biophys. Res. Commun., 446, 1255–1260.PubMedGoogle Scholar
  94. 94.
    Xu, Q., Jiang, Y., Yin, Y., Li, Q., Jing, Y., Qi, Y. T., Xu, Q., Li, W., Lu, B., Peiper, S. S., Jiang, B. H., and Liu, L. Z. (2013) A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1, J. Mol. Cell. Biol., 5, 3–13.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Nossent, A. Y., Eskildsen, T. V., Andersen, L. B., Bie, P., Bronnum, H., Schneider, M., Andersen, D. C., Welten, S. M., Jeppesen, P. L., Hamming, J. F., Hansen, J. L., Quax, P. H., and Sheikh, S. P. (2013) The 14q32 microRNA-487b targets the antiapoptotic insulin receptor substrate 1 in hypertension-induced remodeling of the aorta, Ann. Surg., 258, 743–751.PubMedGoogle Scholar
  96. 96.
    Gurha, P., Wang, T., Larimore, A. H., Sassi, Y., Abreu-Goodger, C., Ramirez, M. O., Reddy, A. K., Engelhardt, S., Taffet, G. E., Wehrens, X. H., Entman, M. L., and Rodriguez, A. (2013) microRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription, PLoS One, 8, e75882.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Ou, Z., Wada, T., Gramignoli, R., Li, S., Strom, S. C., Huang, M., and Xie, W. (2011) MicroRNA hsa-miR-613 targets the human LXRα gene and mediates a feedback loop of LXRα autoregulation, Mol. Endocrinol., 25, 584–596.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Miller, A. M., Gilchrist, D. S., Nijjar, J., Araldi, E., Ramirez, C. M., Lavery, C. A., Fernandez-Hernando, C., McInnes, I. B., and Kurowska-Stolarska, M. (2013) MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice, PLoS One, 8, e72324.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Zhong, D., Huang, G., Zhang, Y., Zeng, Y., Xu, Z., Zhao, Y., He, X., and He, F. (2013) MicroRNA-1 and microRNA-206 suppress LXRα-induced lipogenesis in hepatocytes, Cell. Signal., 25, 1429–1437.PubMedGoogle Scholar
  100. 100.
    Wang, D., Xia, M., Yan, X., Li, D., Wang, L., Xu, Y., Jin, T., and Ling, W. (2012) Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b, Circ. Res., 111, 967–981.PubMedGoogle Scholar
  101. 101.
    Sun, D., Zhang, J., Xie, J., Wei, W., Chen, M., and Zhao, X. (2012) MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7, FEBS Lett., 586, 1472–1479.PubMedGoogle Scholar
  102. 102.
    Rayner, K. J., Suarez, Y., Davalos, A., Parathath, S., Fitzgerald, M. L., Tamehiro, N., Fisher, E. A., Moore, K. J., and Fernandez-Hernando, C. (2010) MiR-33 contributes to the regulation of cholesterol homeostasis, Science, 328, 1570–1573.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Kim, J., Yoon, H., Ramirez, C. M., Lee, S. M., Hoe, H. S., Fernandez-Hernando, C., and Kim, J. (2012) MiR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression, Exp. Neurol., 235, 476–483.PubMedCentralPubMedGoogle Scholar
  104. 104.
    De Aguiar Vallim, T. Q., Tarling, E. J., Kim, T., Civelek, M., Baldan, A., Esau, C., and Edwards, P. A. (2013) MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor, Circ. Res., 112, 1602–1612.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Kang, M. H., Zhang, L. H., Wijesekara, N., de Haan, W., Butland, S., Bhattacharjee, A., and Hayden, M. R. (2013) Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145, Arterioscler. Thromb. Vasc. Biol., 33, 2724–2732.PubMedGoogle Scholar
  106. 106.
    Zhao, R., Feng, J., and He, G. (2014) miR-613 regulates cholesterol efflux by targeting LXRα and ABCA1 in PPARγ activated THP-1 macrophages, Biochem. Biophys. Res. Commun., 448, 329–334.PubMedGoogle Scholar
  107. 107.
    Ramirez, C. M., Davalos, A., Goedeke, L., Salerno, A. G., Warrier, N., Cirera-Salinas, D., Suarez, Y., and Fernandez-Hernando, C. (2011) MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1, Arterioscler. Thromb. Vasc. Biol., 31, 2707–2714.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Song, K. H., Li, T., Owsley, E., and Chiang, J. Y. (2010) A putative role of micro RNA in regulation of cholesterol 7α-hydroxylase expression in human hepatocytes, J. Lipid Res., 51, 2223–2233.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Marquart, T. J., Allen, R. M., Ory, D. S., and Baldan, A. (2010) miR-33 links SREBP-2 induction to repression of sterol transporters, Proc. Natl. Acad. Sci. USA, 107, 12228–12232.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Zhou, R., Li, X., Hu, G., Gong, A. Y., Drescher, K. M., and Chen, X. M. (2012) miR-16 targets transcriptional corepressor SMRT and modulates NF-κB-regulated transactivation of interleukin-8 gene, PLoS One, 7, e30772.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Osborne, T. F., and Espenshade, P. J. (2009) Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it’s been, Genes Dev., 23, 2578–2591.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Li, X., Chen, Y. T., Mukhopadhyay, N. K., Kim, J., Freeman, M. R., and Huang, W. C. (2013) MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells, PLoS One, 8, e70987.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Horie, T., Nishino, T., Baba, O., Kuwabara, Y., Nakao, T., Nishiga, M., Usami, S., Izuhara, M., Sowa, N., Yahagi, N., Shimano, H., Matsumura, S., Inoue, K., Marusawa, H., Nakamura, T., Hasegawa, K., Kume, N., Yokode, M., Kita, T., Kimura, T., and Ono, K. (2013) MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice, Nat. Commun., 4, 2883.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Xiao, F., Yu, J., Liu, B., Guo, Y., Li, K., Deng, J., Zhang, J., Wang, C., Chen, S., Du, Y., Lu, Y., Xiao, Y., Zhang, Z., and Guo, F. (2014) A novel function of microRNA 130a-3p in hepatic insulin sensitivity and liver steatosis, Diabetes, 63, 2631–2642.PubMedGoogle Scholar
  115. 115.
    Mao, J. H., Zhou, R. P., Peng, A. F., Liu, Z. L., Huang, S. H., Long, X. H., and Shu, Y. (2012) microRNA-195 suppresses osteosarcoma cell invasion and migration in vitro by targeting FASN, Oncol. Lett., 4, 1125–1129.PubMedCentralPubMedGoogle Scholar
  116. 116.
    Park, J. H., Ahn, J., Kim, S., Kwon, D. Y., and Ha, T. Y. (2011) Murine hepatic miRNAs expression and regulation of gene expression in diet-induced obese mice, Mol. Cells, 31, 33–38.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Cheng, C., Chen, Z. Q., and Shi, X. T. (2014) MicroRNA-320 inhibits osteosarcoma cells proliferation by directly targeting fatty acid synthase, Tumor Biol., 35, 4177–4183.Google Scholar
  118. 118.
    Long, X. H., Mao, J. H., Peng, A. F., Zhou, Y., Huang, S. H., and Liu, Z. L. (2013) Tumor suppressive microRNA-424 inhibits osteosarcoma cell migration and invasion via targeting fatty acid synthase, Exp. Ther. Med., 5, 1048–1052.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Rinn, J. L., and Chang, H. Y. (2012) Genome regulation by long noncoding RNAs, Annu. Rev. Biochem., 81, 145–166.PubMedGoogle Scholar
  120. 120.
    Guttman, M., Amit, I., Garber, M., French, C., Lin, M. F., Feldser, D., Huarte, M., Zuk, O., Carey, B. W., Cassady, J. P., Cabili, M. N., Jaenisch, R., Mikkelsen, T. S., Jacks, T., Hacohen, N., Bernstein, B. E., Kellis, M., Regev, A., Rinn, J. L., and Lander, E. S. (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals, Nature, 458, 223–227.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Pauli, A., Valen, E., Lin, M. F., Garber, M., Vastenhouw, N. L., Levin, J. Z., Fan, L., Sandelin, A., Rinn, J. L., Regev, A., and Schier, A. F. (2011) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis, Genome Res., 22, 577–591.PubMedGoogle Scholar
  122. 122.
    Tavares, L., Dimitrova, E., Oxley, D., Webster, J., Poot, R., Demmers, J., Bezstarosti, K., Taylor, S., Ura, H., Koide, H., Wutz, A., Vidal, M., Elderkin, S., and Brockdorff, N. (2012) RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3, Cell, 148, 664–678.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Feng, J., Bi, C., Clark, B. S., Mady, R., Shah, P., and Kohtz, J. D. (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator, Genes Dev., 20, 1470–1484.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Willingham, A. T., Orth, A. P., Batalov, S., Peters, E. C., Wen, B. G., Aza-Blanc, P., Hogenesch, J. B., and Schultz, P. G. (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT, Science, 309, 1570–1573.PubMedGoogle Scholar
  125. 125.
    Ellis, B. C., Graham, L. D., and Molloy, P. L. (2014) CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism, Biochim. Biophys. Acta, 1843, 372–386.PubMedGoogle Scholar
  126. 126.
    Cao, W., Wu, W., Shi, F., Chen, X., Wu, L., Yang, K., Tian, F., Zhu, M., Chen, G., Wang, W., Biddle, F. G., and Gu, J. (2013) Integrated analysis of long noncoding RNA and coding RNA expression in esophageal squamous cell carcinoma, Int. J. Genom., 2013, 480534.Google Scholar
  127. 127.
    Halley, P., Kadakkuzha, B. M., Faghihi, M. A., Magistri, M., Zeier, Z., Khorkova, O., Coito, C., Hsiao, J., Lawrence, M., and Wahlestedt, C. (2014) Regulation of the apolipoprotein gene cluster by a long noncoding RNA, Cell Rep., 6, 222–230.PubMedGoogle Scholar
  128. 128.
    Hu, Y. W., Yang, J. Y., Ma, X., Chen, Z. P., Hu, Y. R., Zhao, J. Y., Li, S. F., Qiu, Y. R., Lu, J. B., Wang, Y. C., Gao, J. J., Sha, Y. H., Zheng, L., and Wang, Q. (2014) A lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1-dependent signal transduction pathway is essential for the regulation of cholesterol homeostasis, J. Lipid Res., 55, 681–697.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. Lang-Ouellette
    • 1
  • T. G. Richard
    • 1
  • P. MorinJr.
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryUniversité de MonctonMonctonCanada

Personalised recommendations