Biochemistry (Moscow)

, Volume 79, Issue 11, pp 1151–1160 | Cite as

Mutations in mitochondrial DNA and approaches for their correction

  • M. V. Patrushev
  • P. A. KamenskiEmail author
  • I. O. MazuninEmail author


Apart from the nucleus, the mitochondrion is the only organelle of an animal cell that contains its own genome. Mitochondrial DNA is much less in size than the nuclear one and codes for only several dozens of biological macromolecules. Nevertheless, mutations in mitochondrial genes often result in the occurrence of serious hereditary neuromuscular diseases. New mitochondrial DNA mutations and their relations to clinical symptoms are continuously reported in the scientific literature. In this review, we summarize existing data about such mutations, and also about contemporary gene therapy approaches that have been developed for their suppression.

Key words

mitochondrial genome mitochondrial DNA mutations mitochondrial diseases gene therapy 



mitochondrial DNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Naviaux, R. K. (2004) Developing a systematic approach to the diagnosis and classification of mitochondrial disease, Mitochondrion, 4, 351–361.PubMedCrossRefGoogle Scholar
  2. 2.
    Luft, R., Ikkos, D., Palmieri, G., Ernster, L., and Afzelius, B. (1962) A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study, J. Clin. Invest., 41, 1776–1804.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    DiMauro, S., Bonilla, E., Zeviani, M., Nakagawa, M., and DeVivo, D. C. (1985) Mitochondrial myopathies, Ann. Neurol., 17, 521–538.PubMedCrossRefGoogle Scholar
  4. 4.
    Nass, S., and Nass, M. M. (1963) Intramitochondrial fibers with DNA characteristics. II. Enzymatic and other hydrolytic treatments, J. Cell Biol., 19, 613–629.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Montoya, J., Christianson, T., Levens, D., Rabinowitz, M., and Attardi, G. (1982) Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA, Proc. Natl. Acad. Sci. USA, 79, 7195–7199.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Wallace, D. C., Singh, G., Lott, M. T., Hodge, J. A., Shurr, T. G., Lezza, A. M., Elsas, L. J., 2nd, and Nikoskelainen, E. K. (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy, Science, 242, 1427–1430.PubMedCrossRefGoogle Scholar
  7. 7.
    Holt, I. J., Harding, A. E., and Morgan-Hughes, J. A. (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies, Nature, 331, 717–719.PubMedCrossRefGoogle Scholar
  8. 8.
    Dimauro, S. (2011) A history of mitochondrial diseases, J. Inherit. Metab. Dis., 34, 261–276.PubMedCrossRefGoogle Scholar
  9. 9.
    Spelbrink, J. N. (2010) Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges, IUBMB Life, 62, 19–32.PubMedGoogle Scholar
  10. 10.
    Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., and Young, I. G. (1981) Sequence and organization of the human mitochondrial genome, Nature, 290, 457–465.PubMedCrossRefGoogle Scholar
  11. 11.
    Lightowlers, R. N., Chinnery, P. F., Turnbull, D. M., and Howell, N. (1997) Mammalian mitochondrial genetics: heredity, heteroplasmy and disease, Trends Genet., 13, 450–455.PubMedCrossRefGoogle Scholar
  12. 12.
    Chinnery, P. F., Howell, N., Lightowlers, R. N., and Turnbull, D. M. (1998) Genetic counseling and prenatal diagnosis for mtDNA disease, Am. J. Hum. Genet., 63, 1908–1911.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Cummins, J. M. (2000) Fertilization and elimination of the paternal mitochondrial genome, Hum. Reprod., 15, 92–101.PubMedCrossRefGoogle Scholar
  14. 14.
    Schwartz, M., and Vissing, J. (2002) Paternal inheritance of mitochondrial DNA, N. Engl. J. Med., 347, 576–580.PubMedCrossRefGoogle Scholar
  15. 15.
    Wonnapinij, P., Chinnery, P. F., and Samuels, D. C. (2008) The distribution of mitochondrial DNA heteroplasmy due to random genetic drift, Am. J. Hum. Genet., 83, 582–593.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gilkerson, R. W., and Schon, E. A. (2008) Nucleoid autonomy: an underlying mechanism of mitochondrial genetics with therapeutic potential, Commun. Integr. Biol., 1, 34–36.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Dean, N. L., Battersby, B. J., Ao, A., Gosden, R. G., Tan, S. L., Shoubridge, E. A., and Molnar, M. J. (2003) Prospect of pre-implantation genetic diagnosis for heritable mitochondrial DNA diseases, Mol. Hum. Reprod., 9, 631–638.PubMedCrossRefGoogle Scholar
  18. 18.
    De Laat, P., Koene, S., Heuvel, L. P., Rodenburg, R. J., Janssen, M. C., and Smeitink, J. A. (2013) Inheritance of the m.3243A>G mutation, JIMD Rep., 8, 47–50.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Shoubridge, E. A., and Wai, T. (2007) Mitochondrial DNA and the mammalian oocyte, Curr. Top Dev. Biol., 77, 87–111.PubMedCrossRefGoogle Scholar
  20. 20.
    Calvo, S. E., and Mootha, V. K. (2010) The mitochondrial proteome and human disease, Annu. Rev. Genom. Hum. Genet., 11, 25–44.CrossRefGoogle Scholar
  21. 21.
    Harbauer, A. B., Zahedi, R. P., Sickmann, A., Pfanner, N., and Meisinger, C. (2014) The protein import machinery of mitochondria — a regulatory hub in metabolism, stress, and disease, Cell Metab., 4, 357–372.CrossRefGoogle Scholar
  22. 22.
    Wang, J., Schmitt, E. S., Landsverk, M. L., Zhang, V. W., Li, F. Y., Graham, B. H., Craigen, W. J., and Wong, L. J. (2012) An integrated approach for classifying mitochondrial DNA variants: one clinical diagnostic laboratory’s experience, Genet. Med., 14, 620–626.PubMedCrossRefGoogle Scholar
  23. 23.
    DiMauro, S., and Schon, E. A. (2001) Mitochondrial DNA mutations in human disease, Am. J. Med. Genet., 106, 18–26.PubMedCrossRefGoogle Scholar
  24. 24.
    Bosley, T. M., and Abu-Amero, K. K. (2010) Assessing mitochondrial DNA nucleotide changes in spontaneous optic neuropathies, Ophthalm. Genet., 31, 163–172.CrossRefGoogle Scholar
  25. 25.
    Schiff, M., Benit, P., Jacobs, H. T., Vockley, J., and Rustin, P. (2012) Therapies in inborn errors of oxidative metabolism, Trends Endocrinol. Metab., 23, 488–495.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Manfredi, G., Fu, J., Ojaimi, J., Sadlock, J. E., Kwong, J. Q., Guy, J., and Schon, E. A. (2002) Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus, Nature Genet., 30, 394–399.PubMedCrossRefGoogle Scholar
  27. 27.
    Kaltimbacher, V., Bonnet, C., Lecoeuvre, G., Forster, V., Sahel, J. A., and Corral-Debrinski, M. (2006) mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein, RNA, 12, 1408–1417.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Bonnet, C., Kaltimbacher, V., Ellouze, S., Augustin, S., Benit, P., Forster, V., Rustin, P., Sahel, J. A., and Corral-Debrinski, M. (2007) Allotopic mRNA localization to the mitochondrial surface rescues respiratory chain defects in fibroblasts harboring mitochondrial DNA mutations affecting complex I or v-subunits, Rejuven. Res., 10, 127–144.CrossRefGoogle Scholar
  29. 29.
    Ojaimi, J., Pan, J., Santra, S., Snell, W. J., and Schon, E. A. (2002) An algal nucleus-encoded subunit of mitochondrial ATP synthase rescues a defect in the analogous human mitochondrial-encoded subunit, Mol. Biol. Cell, 13, 3836–3844.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Tanaka, M., Borgeld, H. J., Zhang, J., Muramatsu, S., Gong, J. S., Yoneda, M., Maruyama, W., Naoi, M., Ibi, T., Sahashi, K., Shamoto, M., Fuku, N., Kurata, M., Yamada, Y., Nishizawa, K., Akao, Y., Ohishi, N., Miyabayashi, S., Umemoto, H., Muramatsu, T., Furukawa, K., Kikuchi, A., Nakano, I., Ozawa, K., and Yagi, K. (2002) Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria, J. Biomed. Sci., 9, 534–541.PubMedGoogle Scholar
  31. 31.
    Alexeyev, M. F., Venediktova, N., Pastukh, V., Shokolenko, I., Bonilla, G., and Wilson, G. L. (2008) Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes, Gene Ther., 15, 516–523.PubMedCrossRefGoogle Scholar
  32. 32.
    Bacman, S. R., Williams, S. L., Garcia, S., and Moraes, C. T. (2010) Organ-specific shifts in mtDNA heteroplasmy following systemic delivery of a mitochondria-targeted restriction endonuclease, Gene Ther., 17, 713–720.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Minczuk, M., Papworth, M. A., Kolasinska, P., Murphy, M. P., and Klug, A. (2006) Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase, Proc. Natl. Acad. Sci. USA, 103, 19689–19694.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Gammage, P. A., Rorbach, J., Vincent, A. I., Rebar, E. J., and Minczuk, M. (2014) Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations, EMBO Mol. Med., 6, 458–466.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Guy, J., Qi, X., Pallotti, F., Schon, E. A., Manfredi, G., Carelli, V., Martinuzzi, A., Hauswirth, W. W., and Lewin, A. S. (2002) Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy, Ann. Neurol., 52, 534–542.PubMedCrossRefGoogle Scholar
  36. 36.
    Yu, H., Koilkonda, R. D., Chou, T. H., Porciatti, V., Ozdemir, S. S., Chiodo, V., Boye, S. L., Boye, S. E., Hauswirth, W. W., Lewin, A. S., and Guy, J. (2012) Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model, Proc. Natl. Acad. Sci. USA, 109, 1238–1247.CrossRefGoogle Scholar
  37. 37.
    Park, J. S., Li, Y. F., and Bai, Y. (2007) Yeast NDI1 improves oxidative phosphorylation capacity and increases protection against oxidative stress and cell death in cells carrying a Leber’s hereditary optic neuropathy mutation, Biochim. Biophys. Acta, 1772, 533–542.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Bonnet, C., Augustin, S., Ellouze, S., Benit, P., Bouaita, A., Rustin, P., Sahel, J. A., and Corral-Debrinski, M. (2008) The optimized allotopic expression of ND1 or ND4 genes restores respiratory chain complex I activity in fibroblasts harboring mutations in these genes, Biochim. Biophys. Acta, 1783, 1707–1717.PubMedCrossRefGoogle Scholar
  39. 39.
    Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S., and Moraes, C. T. (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs, Nature Med., 19, 1111–1113.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Kolesnikova, O. A., Entelis, N. S., Jacquin-Becker, C., Goltzene, F., Chrzanowska-Lightowlers, Z. M., Lightowlers, R. N., Martin, R. P., and Tarassov, I. (2004) Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells, Hum. Mol. Genet., 13, 2519–2534.PubMedCrossRefGoogle Scholar
  41. 41.
    Kolesnikova, O. A., Entelis, N. S., Mireau, H., Fox, T. D., Martin, R. P., and Tarassov, I. A. (2000) Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm, Science, 289, 1931–1933.PubMedCrossRefGoogle Scholar
  42. 42.
    Tarassov, I., Kamenski, P., Kolesnikova, O., Karicheva, O., Martin, R. P., Krasheninnikov, I. A., and Entelis, N. (2007) Import of nuclear DNA-encoded RNAs into mitochondria and mitochondrial translation, Cell Cycle, 6, 2473–2477.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang, G., Shimada, E., Zhang, J., Hong, J. S., Smith, G. M., Teitell, M. A., and Koehler, C. M. (2012) Correcting human mitochondrial mutations with targeted RNA import, Proc. Natl. Acad. Sci. USA, 109, 4840–4845.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Ling, J., Yadavalli, S. S., and Ibba, M. (2007) Phenylalanyl-tRNA synthetase editing defects result in efficient mistranslation of phenylalanine codons as tyrosine, RNA, 13, 1881–1886.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Park, H., Davidson, E., and King, M. P. (2008) Overexpressed mitochondrial leucyl-tRNA synthetase suppresses the A3243G mutation in the mitochondrial tRNA (Leu (UUR)) gene, RNA, 14, 2407–2416.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Karicheva, O. Z., Kolesnikova, O. A., Schirtz, T., Vysokikh, M. Y., Mager-Heckel, A. M., Lombes, A., Boucheham, A., Krasheninnikov, I. A., Martin, R. P., Entelis, N., and Tarassov, I. (2011) Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria, Nucleic Acids Res., 39, 8173–8186.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Comte, C., Tonin, Y., Heckel-Mager, A. M., Boucheham, A., Smirnov, A., Aure, K., Lombes, A., Martin, R. P., Entelis, N., and Tarassov, I. (2013) Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns-Sayre Syndrome, Nucleic Acids Res., 41, 418–433.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Schon, E. A., Santra, S., Pallotti, F., and Girvin, M. E. (2001) Pathogenesis of primary defects in mitochondrial ATP synthesis, Sem. Cell Dev. Biol., 12, 441–448.CrossRefGoogle Scholar
  49. 49.
    Solaini, G., Harris, D. A., Lenaz, G., Sgarbi, G., and Baracca, A. (2008) The study of the pathogenic mechanism of mitochondrial diseases provides information on basic bioenergetics, Biochim. Biophys. Acta, 1777, 941–945.PubMedCrossRefGoogle Scholar
  50. 50.
    Holt, I. J., Harding, A. E., Petty, R. K., and Morgan-Hughes, J. A. (1990) A new mitochondrial disease associated with mitochondrial DNA heteroplasmy, Am. J. Hum. Genet., 46, 428–433.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Tatuch, Y., Christodoulou, J., Feigenbaum, A., Clarke, J. T., Wherret, J., Smith, C., Rudd, N., Petrova-Benedict, R., and Robinson, B. H. (1992) Heteroplasmic mtDNA mutation (T-G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high, Am. J. Hum. Genet., 50, 852–858.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Bacman, S. R., Williams, S. L., Duan, D., and Moraes, C. T. (2012) Manipulation of mtDNA heteroplasmy in all striated muscles of newborn mice by AAV9-mediated delivery of a mitochondria-targeted restriction endonuclease, Gene Ther., 19, 1101–1106.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Sadun, A. A., La Morgia, C., and Carelli, V. (2011) Leber’s hereditary optic neuropathy, Curr. Treat. Options Neurol., 13, 109–117.PubMedCrossRefGoogle Scholar
  54. 54.
    Huoponen, K., Vilkki, J., Aula, P., Nikoskelainen, E. K., and Savontaus, M. L. (1991) A new mtDNA mutation associated with Leber hereditary optic neuroretinopathy, Am. J. Hum. Genet., 48, 1147–1153.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Jun, A. S., Trounce, I. A., Brown, M. D., Shoffner, J. M., and Wallace, D. C. (1996) Use of trans-mitochondrial cybrids to assign a complex I defect to the mitochondrial DNA-encoded NADH dehydrogenase subunit 6 gene mutation at nucleotide pair 14,459 that causes Leber hereditary optic neuropathy and dystonia, Mol. Cell Biol., 16, 771–777.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J. A., Somia, N. V., Bogdanove, A. J., and Voytas, D. F. (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting, Nucleic Acids Res., 39, e82.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Silvestri, G., Ciafaloni, E., Santorelli, F. M., Shanske, S., Servidei, S., Graf, W. D., Sumi, M., and DiMauro, S. (1993) Clinical features associated with the A->G transition at nucleotide 8344 of mtDNA (“MERRF mutation”), Neurology, 43, 1200–1206.PubMedCrossRefGoogle Scholar
  58. 58.
    Tonin, Y., Heckel, A. M., Dovydenko, I., Meschaninova, M., Comte, C., Venyaminova, A., Pyshnyi, D., Tarassov, I., and Entelis, N. (2014) Characterization of chemically modified oligonucleotides targeting a pathogenic mutation in human mitochondrial DNA, Biochimie, 100, 192–199.PubMedCrossRefGoogle Scholar
  59. 59.
    Mancuso, M., Filosto, M., Mootha, V. K., Rocchi, A., Pistolesi, S., Murri, L., DiMauro, S., and Siciliano, G. (2004) A novel mitochondrial tRNAPhe mutation causes MERRF syndrome, Neurology, 62, 2119–2121.PubMedCrossRefGoogle Scholar
  60. 60.
    Suzuki, T., Nagao, A., and Suzuki, T. (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases, Annu. Rev. Genet., 45, 299–329.PubMedCrossRefGoogle Scholar
  61. 61.
    Schon, E. A., Rizzuto, R., Moraes, C. T., Nakase, H., Zeviani, M., and DiMauro, S. (1989) A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA, Science, 244, 346–349.PubMedCrossRefGoogle Scholar
  62. 62.
    Maceluch, J. A., and Niedziela, M. (2006) The clinical diagnosis and molecular genetics of Kearns-Sayre syndrome: a complex mitochondrial encephalomyopathy, Pediatr. Endocrinol. Rev., 4, 117–137.PubMedGoogle Scholar
  63. 63.
    Corral-Debrinski, M., Horton, T., Lott, M. T., Shoffner, J. M., Beal, M. F., and Wallace, D. C. (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age, Nature Genet., 2, 324–329.PubMedCrossRefGoogle Scholar
  64. 64.
    Kolesnikova, O., Kazakova, H., Comte, C., Steinberg, S., Kamenski, P., Martin, R. P., Tarassov, I., and Entelis, N. (2010) Selection of RNA aptamers imported into yeast and human mitochondria, RNA, 16, 926–941.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Dimauro, S. (2004) Mitochondrial medicine, Biochim. Biophys. Acta, 1659, 107–114.PubMedCrossRefGoogle Scholar
  66. 66.
    Pfeffer, G., Horvath, R., Klopstock, T., Mootha, V. K., Suomalainen, A., Koene, S., Hirano, M., Zeviani, M., Bindoff, L. A., Yu-Wai-Man, P., Hanna, M., Carelli, V., McFarland, R., Majamaa, K., Turnbull, D. M., Smeitink, J., and Chinnery, P. F. (2013) New treatments for mitochondrial disease — no time to drop our standards, Nature Rev. Neurol., 9, 474–481.CrossRefGoogle Scholar
  67. 67.
    Footitt, E. J., Sinha, M. D., Raiman, J. A., Dhawan, A., Moganasundram, S., and Champion, M. P. (2008) Mitochondrial disorders and general anaesthesia: a case series and review, Br. J. Anaesth., 100, 436–441.PubMedCrossRefGoogle Scholar
  68. 68.
    Tachibana, M., Amato, P., Sparman, M., Woodward, J., Sanchis, D. M., Ma, H., Gutierrez, N. M., Tippner-Hedges, R., Kang, E., Lee, H. S., Ramsey, C., Masterson, K., Battaglia, D., Lee, D., Wu, D., Jensen, J., Patton, P., Gokhale, S., Stouffer, R., and Mitalipov, S. (2013) Towards germline gene therapy of inherited mitochondrial diseases, Nature, 493, 627–631.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Bredenoord, A. L., Dondorp, W., Pennings, G., and De Wert, G. (2011) Ethics of modifying the mitochondrial genome, J. Med. Ethics, 37, 97–100.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations