Biochemistry (Moscow)

, Volume 79, Issue 11, pp 1141–1150 | Cite as

Evolution of α- and β-Globin genes and their regulatory systems in light of the hypothesis of domain organization of the genome

  • O. V. Iarovaia
  • E. S. Ioudinkova
  • N. V. Petrova
  • K. V. DolgushinEmail author
  • A. V. Kovina
  • A. V. Nefedochkina
  • Y. S. Vassetzky
  • S. V. Razin


The α- and β-globin gene domains are a traditional model for study of the domain organization of the eucaryotic genome because these genes encode hemoglobin, a physiologically important protein. The α-globin and β-globin gene domains are organized in completely different ways, while the expression of globin genes is tightly coordinated, which makes it extremely interesting to study the origin of these genes and the evolution of their regulatory systems. In this review, the organization of the α- and β-globin gene domains and their genomic environment in different taxonomic groups are comparatively analyzed. A new hypothesis of possible evolutionary pathways for segregated α- and β-globin gene domains of warm-blooded animals is proposed.

Key words

α- and β-globin gene domains gene expression evolution 



locus control region


major regulatory element


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodnar, J. W. (1988) A domain model for eukaryotic DNA organization: a molecular basis for cell differentiation and chromosome evolution, J. Theor. Biol., 132, 479–507.PubMedCrossRefGoogle Scholar
  2. 2.
    Razin, S. V., and Vassetzky, Y. S. (1992) Domain organization of eukaryotic genome, Cell Biol. Int. Rep., 16, 697–708.PubMedCrossRefGoogle Scholar
  3. 3.
    Razin, S. V., and Ioudinkova, E. S. (2007) Mechanisms controlling activation of the alpha-globin gene domain in chicken erythroid cells, Biochemistry (Moscow), 72, 467–470.CrossRefGoogle Scholar
  4. 4.
    Razin, S. V., Farrell, C. M., and Recillas-Targa, F. (2003) Genomic domains and regulatory elements operating at the domain level, Int. Rev. Cytol., 226, 63–125.PubMedCrossRefGoogle Scholar
  5. 5.
    Wallace, J. A., and Felsenfeld, G. (2007) We gather together: insulators and genome organization, Curr. Opin. Genet. Dev., 17, 400–407.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Dillon, N., and Sabbatini, P. (2000) Functional gene expression domains: defining the functional units of eukaryotic gene regulation, BioEssays, 22, 657–665.PubMedCrossRefGoogle Scholar
  7. 7.
    Miller, J. L. (2002) Hemoglobin switching and modulation: genes, cells, and signals, Curr. Opin. Hematol., 9, 87–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Razin, S. V., Ulianov, S. V., Ioudinkova, E. S., Gushchanskaya, E. S., Gavrilov, A. A., and Iarovaia, O. V. (2012) Domains of α- and β-globin genes in the context of the structural-functional organization of the eukaryotic genome, Biochemistry (Moscow), 77, 1409–1423.CrossRefGoogle Scholar
  9. 9.
    Craddock, C. F., Vyas, P., Sharpe, J. A., Ayyub, H., Wood, W. G., and Higgs, D. R. (1995) Contrasting effects of alpha and beta globin regulatory elements on chromatin structure may be related to their different chromosomal environment, EMBO J., 14, 1718–1726.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Recillas-Targa, F., and Razin, S. V. (2001) Chromatin domains and regulation of gene expression: familiar and enigmatic clusters of chicken globin genes, Crit. Rev. Eukaryot. Gene Expr., 11, 227–242.PubMedGoogle Scholar
  11. 11.
    Hughes, J. R., Cheng, J. F., Ventress, N., Prabhakar, S., Clark, K., Anguita, E., De Gobbi, M., de Jong, P., Rubin, E., and Higgs, D. R. (2005) Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences, Proc. Natl. Acad. Sci. USA, 102, 9830–9835.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Flint, J., Tufarelli, C., Peden, J., Clark, K., Daniels, R. J., Hardison, R., Miller, W., Philipsen, S., Tan-Un, K. C., and McMorrow, T. (2001) Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster, Hum. Mol. Genet., 10, 371–382.PubMedCrossRefGoogle Scholar
  13. 13.
    Tufarelli, C., Hardison, R., Miller, W., Hughes, J., Clark, K., Ventress, N., Frischauf, A. M., and Higgs, D. R. (2004) Comparative analysis of the alpha-like globin clusters in mouse, rat, and human chromosomes indicates a mechanism underlying breaks in conserved synteny, Genome Res., 14, 623–630.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Chen, H., Lowrey, C. H., and Stamatoyannopoulos, G. (1997) Analysis of enhancer function of the HS-40 core sequence of the human alpha-globin cluster, Nucleic Acids Res., 25, 2917–2922.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Higgs, D. R., Wood, W. G., Jarman, A. P., Sharpe, J., Lida, J., Pretorius, I.-M., and Ayyub, H. (1990) A major positive regulatory region located far upstream of the human α-globin gene locus, Gene Dev., 4, 1588–1601.PubMedCrossRefGoogle Scholar
  16. 16.
    Jarman, A. P., Wood, W. G., Sharpe, J. A., Gourdon, G., Ayyub, H., and Higgs, D. R. (1991) Characterization of the major regulatory element upstream of the human α-globin gene cluster, Mol. Cell Biol., 11, 4679–4689.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Ioudinkova, E. S., Ulianov, S. V., Bunina, D., Iarovaia, O. V., Gavrilov, A. A., and Razin, S. V. (2011) The inactivation of the π gene in chicken erythroblasts of adult lineage is not mediated by packaging of the embryonic part of the α-globin gene domain into a repressive heterochromatin-like structure, Epigenetics, 6, 1481–1488.PubMedCrossRefGoogle Scholar
  18. 18.
    Knezetic, J. A., and Felsenfeld, G. (1993) Mechanism of developmental regulation of alpha pi, the chicken embryonic alpha-globin gene, Mol. Cell Biol., 13, 4632–4639.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Sabath, D. E., Spangler, E. A., Rubin, E. M., and Stamatoyannopoulos, G. (1993) Analysis of the human zeta-globin gene promoter in transgenic mice, Blood, 82, 2899–2905.PubMedGoogle Scholar
  20. 20.
    Singal, R., and van Wert, J. M. (2001) De novo methylation of an embryonic globin gene during normal development is strand specific and spreads from the proximal transcribed region, Blood, 98, 3441–3446.PubMedCrossRefGoogle Scholar
  21. 21.
    Singal, R., van Wert, J. M., and Ferdinand, L., Jr. (2002) Methylation of alpha-type embryonic globin gene alpha pi represses transcription in primary erythroid cells, Blood, 100, 4217–4222.PubMedCrossRefGoogle Scholar
  22. 22.
    Garrick, D., De Gobbi, M., Samara, V., Rugless, M., Holland, M., Ayyub, H., Lower, K., Sloane-Stanley, J., Gray, N., and Koch, C. (2008) The role of the polycomb complex in silencing alpha-globin gene expression in nonerythroid cells, Blood, 112, 3889–3899.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hughes, J. R., Cheng, J. F., Ventress, N., and Prabhakar, S. (2000) Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences, Proc. Natl. Acad. Sci. USA, 102, 9830–9835.CrossRefGoogle Scholar
  24. 24.
    Gavrilov, A. A., and Razin, S. V. (2008) Spatial configuration of the chicken α-globin gene domain: immature and active chromatin hubs, Nucleic Acids Res., 36, 4629–4640.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Vernimmen, D., De Gobbi, M., Sloane-Stanley, J. A., Wood, W. G., and Higgs, D. R. (2007) Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression, EMBO J., 26, 2041–2051.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Vernimmen, D., Marques-Kranc, F., Sharpe, J. A., Sloane-Stanley, J. A., Wood, W. G., Wallace, H. A., Smith, A. J., and Higgs, D. R. (2009) Chromosome looping at the human alpha-globin locus is mediated via the major upstream regulatory element (HS-40), Blood, 114, 4253–4260.PubMedCrossRefGoogle Scholar
  27. 27.
    Ioudinkova, E. S., and Razin, S. V. (2003) Regulatory systems of genome domains with vague boundaries, Genetika, 39, 182–186.Google Scholar
  28. 28.
    Anguita, E., Johnson, C. A., Wood, W. G., Turner, B. M., and Higgs, D. R. (2001) Identification of a conserved erythroid specific domain of histone acetylation across the alpha-globin gene cluster, Proc. Natl. Acad. Sci. USA, 98, 12114–12119.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    De Gobbi, M., Anguita, E., Hughes, J., Sloane-Stanley, J. A., Sharpe, J. A., Koch, C. M., Dunham, I., Gibbons, R. J., Wood, W. G., and Higgs, D. R. (2007) Tissue-specific histone modification and transcription factor binding in alpha globin gene expression, Blood, 110, 4503–4510.PubMedCrossRefGoogle Scholar
  30. 30.
    Philonenko, E. S., Klochkov, D. B., Borunova, V. V., Gavrilov, A. A., Razin, S. V., and Iarovaia, O. V. (2009) TMEM8 — a non-globin gene entrapped in the globin web, Nucleic Acids Res., 37, 7394–7406.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Forrester, W. C., Epner, E., Driscoll, M. C., Enver, T., Brice, M., Papayannopoulou, T., and Groudine, M. (1990) A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus, Gene Dev., 4, 1637–1649.PubMedCrossRefGoogle Scholar
  32. 32.
    Grosveld, F., van Assandelt, G. B., Greaves, D. R., and Kollias, B. (1987) Position-independent, high-level expression of the human β-globin gene in transgenic mice, Cell, 51, 975–985.PubMedCrossRefGoogle Scholar
  33. 33.
    Hardison, R., Slightom, J. L., Gumicio, D. L., Goodman, M., Stojanovic, N., and Miller, W. (1997) Locus control regions of mammalian beta-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights, Gene, 205, 73–94.PubMedCrossRefGoogle Scholar
  34. 34.
    Li, Q., Zhou, B., Powers, P., Enver, T., and Stamatoyannopoulos, G. (1990) β-Globin locus activations regions: conservation of organization, structure and function, Proc. Natl. Acad. Sci. USA, 87, 8207–8211.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Mason, M. M., Lee, E., Westphal, H., and Reitman, M. (1995) Expression of the chicken β-globin cluster in mice: correct developmental expression and distributed control, Mol. Cell Biol., 15, 407–414.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Talbot, D., Collis, P., Antoniou, M., Vidal, M., Grosveld, F., and Greaves, D. R. (1989) A dominant control region from the human β-globin locus conferring integration siteindependent gene expression, Nature, 338, 352–355.PubMedCrossRefGoogle Scholar
  37. 37.
    Dillon, N., and Grosveld, F. (1993) Transcriptional regulation of multigene loci: multilevel control, Trends Genet., 9, 134–137.PubMedCrossRefGoogle Scholar
  38. 38.
    Bulger, M., van Doorninck, J. H., Saitoh, N., Telling, A., Farrell, C., Bender, M. A., Felsenfeld, G., Axel, R., Groudine, M., and von Doorninck, J. H. (1999) Conservation of sequence and structure flanking the mouse and human beta-globin loci: the beta-globin genes are embedded within an array of odorant receptor genes, Proc. Natl. Acad. Sci. USA, 96, 5129–5134.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Farrell, C. M., West, A. G., and Felsenfeld, G. (2002) Conserved CTCF insulator elements flank the mouse and human beta-globin loci, Mol. Cell Biol., 22, 3820–3831.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Li, Q., and Stamatoyannopoulos, G. (1994) Hypersensitive site 5 of the human beta locus control region functions as a chromatin insulator, Blood, 84, 1399–1401.PubMedGoogle Scholar
  41. 41.
    Tanimoto, K., Liu, Q., Bungert, J., and Engel, J. D. (1999) Effects of altered gene order or orientation of the locus control region on human beta-globin gene expression in mice, Nature, 398, 344–348.PubMedCrossRefGoogle Scholar
  42. 42.
    Ulianov, S. V., Gavrilov, A. A., and Razin, S. V. (2012) Spatial organization of the chicken beta-globin gene domain in erythroid cells of embryonic and adult lineages, Epigenetics Chromatin, 5, 16.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Palstra, R. J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F., and de Laat, W. (2003) The beta-globin nuclear compartment in development and erythroid differentiation, Nat. Genet., 35, 190–194.PubMedCrossRefGoogle Scholar
  44. 44.
    Splinter, E., Heath, H., Kooren, J., Palstra, R. J., Klous, P., Grosveld, F., Galjart, N., and de Laat, W. (2006) CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus, Genes Dev., 20, 2349–2354.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F., and de Laat, W. (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus, Mol. Cell, 10, 1453–1465.PubMedCrossRefGoogle Scholar
  46. 46.
    Forsberg, E. C., and Bresnick, E. H. (2001) Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world, BioEssays, 23, 820–830.PubMedCrossRefGoogle Scholar
  47. 47.
    Gribnau, G., Diderich, K., Pruzina, S., Calzolari, R., and Frazer, P. (2000) Intergenic transcription and developmental remodelling of chromatin subdomains in the human β-globin locus, Mol. Cell, 5, 377–386.PubMedCrossRefGoogle Scholar
  48. 48.
    Johnson, K. D., Christensen, H. M., Zhao, B., and Bresnick, E. H. (2001) Distinct mechanisms control RNA polymerase II recruitment to a tissue-specific locus control region and a downstream promoter, Mol. Cell, 8, 465–471.PubMedCrossRefGoogle Scholar
  49. 49.
    Johnson, K. D., Grass, J. A., Boyer, M. E., Kiekhaefer, C. M., Blobel, G. A., Weiss, M. J., and Bresnick, E. H. (2002) Cooperative activities of hematopoietic regulators recruit RNA polymerase II to a tissue-specific chromatin domain, Proc. Natl. Acad. Sci. USA, 99, 11760–11765.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Kiekhaefer, C. M., Grass, J. A., Johnson, K. D., Boyer, M. E., and Bresnick, E. H. (2002) Hematopoietic-specific activators establish an overlapping pattern of histone acetylation and methylation within a mammalian chromatin domain, Proc. Natl. Acad. Sci. USA, 99, 14309–14314.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Sawado, T., Igarashi, K., and Groudine, M. (2001) Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter, Proc. Natl. Acad. Sci. USA, 98, 10226–10231.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Schubeler, D., Francastel, C., Cimbora, D. M., Reik, A., Martin, D. I. K., and Groudine, M. (2000) Nuclear localization and histone acetilation: a pathway for chromatin opening and transcription activation of the human β-globin locus, Gene Dev., 14, 940–950.PubMedCentralPubMedGoogle Scholar
  53. 53.
    De Laat, W., and Grosveld, F. (2003) Spatial organization of gene expression: the active chromatin hub, Chromosome Res., 11, 447–459.PubMedCrossRefGoogle Scholar
  54. 54.
    De Laat, W., Klous, P., Kooren, J., Noordermeer, D., Palstra, R. J., Simonis, M., Splinter, E., and Grosveld, F. (2008) Three-dimensional organization of gene expression in erythroid cells, Curr. Top. Dev. Biol., 82, 117–139.PubMedCrossRefGoogle Scholar
  55. 55.
    Prioleau, M.-N., Nony, P., Simpson, M., and Felsenfeld, G. (1999) An insulator element and condensed chromatin region separate the chicken β-globin locus from an independently regulated erythroid-specific folate receptor gene, EMBO J., 18, 4035–4048.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Opazo, J. C., Butts, G. T., Nery, M. F., Storz, J. F., and Hoffmann, F. G. (2013) Whole-genome duplication and the functional diversification of teleost fish hemoglobins, Mol. Biol. Evol., 30, 140–153.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Ganis, J. J., Hsia, N., Trompouki, E., de Jong, J. L., DiBiase, A., Lambert, J. S., Jia, Z., Sabo, P. J., Weaver, M., Sandstrom, R., Stamatoyannopoulos, J. A., Zhou, Y., and Zon, L. I. (2012) Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR, Dev. Biol., 366, 185–194.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Brownlie, A., Hersey, C., Oates, A. C., Paw, B. H., Falick, A. M., Witkowska, H. E., Flint, J., Higgs, D., Jessen, J., Bahary, N., Zhu, H., Lin, S., and Zon, L. (2003) Characterization of embryonic globin genes of the zebrafish, Dev. Biol., 255, 48–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Tiedke, J., Gerlach, F., Mitz, S. A., Hankeln, T., and Burmester, T. (2011) Ontogeny of globin expression in zebrafish (Danio rerio), J. Comp. Physiol. B, 181, 1011–1021.PubMedCrossRefGoogle Scholar
  60. 60.
    Davidson, A. J., and Zon, L. I. (2004) The “definitive” (and “primitive”) guide to zebrafish hematopoiesis, Oncogene, 23, 7233–7246.PubMedCrossRefGoogle Scholar
  61. 61.
    Maruyama, K., Ishikawa, Y., Yasumasu, S., and Iuchi, I. (2007) Globin gene enhancer activity of a DNase I hypersensitive site-40 homolog in medaka Oryzias latipes, Zool. Sci., 24, 997–1004.PubMedCrossRefGoogle Scholar
  62. 62.
    Maruyama, K., Yasumasu, S., Naruse, K., Mitani, H., Shima, A., and Iuchi, I. (2004) Genomic organization and developmental expression of globin genes in the teleost Oryzias latipes, Gene, 335, 89–100.PubMedCrossRefGoogle Scholar
  63. 63.
    Vinogradov, S. N., Hoogewijs, D., Bailly, X., Arredondo-Peter, R., Gough, J., Dewilde, S., Moens, L., and Vanfleteren, J. R. (2006) A phylogenomic profile of globins, BMC Evol. Biol., 6, 31.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Hoffmann, F. G., Opazo, J. C., and Storz, J. F. (2012) Evolution of the globin gene family in deuterostomes: lineage-specific patterns of diversification and attrition, Mol. Biol. Evol., 29, 303–312.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Hoffmann, F. G., Opazo, J. C., and Storz, J. F. (2010) Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates, Proc. Natl. Acad. Sci. USA, 107, 14274–14279.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Czelusniak, J., Goodman, M., Hewett-Emmett, D., Weiss, M. L., Venta, P. J., and Tashian, R. E. (1982) Phylogenetic origins and adaptive evolution of avian and mammalian haemoglobin genes, Nature, 298, 297–300.PubMedCrossRefGoogle Scholar
  67. 67.
    Goodman, M., Moore, G. W., and Matsuda, G. (1975) Darwinian evolution in the genealogy of haemoglobin, Nature, 253, 603–608.PubMedCrossRefGoogle Scholar
  68. 68.
    Goodman, M., Miyamoto, M. M., and Czelusniak, J. (1987) Globins: a case study in molecular phylogeny, in Molecules and Morphology in Evolution: Conflict or Compromise? (Patterson, C., ed.) Cambridge University Press, Cambridge, UK, pp. 140–176.Google Scholar
  69. 69.
    Hardison, R. S. (2008) Globin genes on the move, J. Biol., 7, 35.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Hardison, R. S. (2005) in Encyclopedia of Life Sciences, John Wiley & Sons, Ltd. ( Scholar
  71. 71.
    De Leo, A. A., Wheeler, D., Lefevre, C., Cheng, J. F., Hope, R., Kuliwaba, J., Nicholas, K. R., Westerman, M., and Graves, J. A. (2005) Sequencing and mapping hemoglobin gene clusters in the Australian model dasyurid marsupial Sminthopsis macroura, Cytogenet. Genome Res., 108, 333–341.PubMedCrossRefGoogle Scholar
  72. 72.
    Patel, V. S., Cooper, S. J., Deakin, J. E., Fulton, B., Graves, T., Warren, W. C., Wilson, R. K., and Graves, J. A. (2008) Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals, BMC Biol., 6, 34.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Hoffmann, F. G., Opazo, J. C., and Storz, J. F. (2008) New genes originated via multiple recombinational pathways in the beta-globin gene family of rodents, Mol. Biol. Evol., 25, 591–602.PubMedCrossRefGoogle Scholar
  74. 74.
    Wheeler, D., Hope, R., Cooper, S. B., Dolman, G., Webb, G. C., Bottema, C. D., Gooley, A. A., Goodman, M., and Holland, R. A. (2001) An orphaned mammalian beta-globin gene of ancient evolutionary origin, Proc. Natl. Acad. Sci. USA, 98, 1101–1106.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Wheeler, D., Hope, R. M., Cooper, S. B., Gooley, A. A., and Holland, R. A. (2004) Linkage of the beta-like omegaglobin gene to alpha-like globin genes in an Australian marsupial supports the chromosome duplication model for separation of globin gene clusters, J. Mol. Evol., 58, 642–652.PubMedCrossRefGoogle Scholar
  76. 76.
    Hoffmann, F. G., and Storz, J. F. (2007) The alphaD-globin gene originated via duplication of an embryonic alphalike globin gene in the ancestor of tetrapod vertebrates, Mol. Biol. Evol., 24, 1982–1990.PubMedCrossRefGoogle Scholar
  77. 77.
    Opazo, J. C., Hoffmann, F. G., and Storz, J. F. (2008) Differential loss of embryonic globin genes during the radiation of placental mammals, Proc. Natl. Acad. Sci. USA, 105, 1590–1595.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • O. V. Iarovaia
    • 1
    • 2
  • E. S. Ioudinkova
    • 1
    • 2
  • N. V. Petrova
    • 1
    • 2
  • K. V. Dolgushin
    • 1
    • 2
    Email author
  • A. V. Kovina
    • 3
  • A. V. Nefedochkina
    • 3
  • Y. S. Vassetzky
    • 2
    • 4
  • S. V. Razin
    • 1
    • 2
    • 3
  1. 1.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Joint Russian-French Laboratory LIA1066MoscowParisRussiaFrance
  3. 3.Biological FacultyLomonosov Moscow State UniversityMoscowRussia
  4. 4.Institute Gustave RoussyVillejuifFrance

Personalised recommendations