Biochemistry (Moscow)

, Volume 79, Issue 10, pp 1101–1110 | Cite as

Preventive and therapeutic effects of SkQ1-containing Visomitin eye drops against light-induced retinal degeneration

  • Yu. P. Novikova
  • O. S. GancharovaEmail author
  • O. V. Eichler
  • P. P. Philippov
  • E. N. GrigoryanEmail author


The human retina is constantly affected by light of varying intensity, this being especially true for photoreceptor cells and retinal pigment epithelium. Traditionally, photoinduced damages of the retina are induced by visible light of high intensity in albino rats using the LIRD (light-induced retinal degeneration) model. This model allows study of pathological processes in the retina and the search for retinoprotectors preventing retinal photodamage. In addition, the etiology and mechanisms of retina damage in the LIRD model have much in common with the mechanisms of the development of age-related retinal disorders, in particular, with age-related macular degeneration (AMD). We have studied preventive and therapeutic effects of Visomitin eye drops (based on the mitochondria-targeted antioxidant SkQ1) on albino rat retinas damaged by bright light. In the first series of experiments, rats receiving Visomitin for two weeks prior to illumination demonstrated significantly less expressed atrophic and degenerative changes in the retina compared to animals receiving similar drops with no SkQ1. In the second series, the illuminated rats were treated for two weeks with Visomitin or similar drops without SkQ1. The damaged retinas of the experimental animals were repaired much more effectively than those of the control animals. Therefore, we conclude that Visomitin SkQ1-containing eye drops have pronounced preventive and therapeutic effects on the photodamaged retina and might be recommended as a photoprotector and a pharmaceutical preparation for the treatment of AMD in combination with conventional medicines.

Key words

retina photoreceptors photodamage SkQ1 Visomitin 



age-related macular degeneration


ganglion cell layer


inner nuclear layer


inner plexiform layer


light-induced retinal degeneration


outer nuclear layer


outer plexiform layer


photoreceptor layer


retinal pigment epithelium


reactive oxygen species


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckman, K. B., and Ames, B. N. (1998) The free radical theory of aging matures, Physiol. Rev., 78, 547–581.PubMedGoogle Scholar
  2. 2.
    Skulachev, V. P. (2005) How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers, IUBMB Life, 57, 305–310.PubMedCrossRefGoogle Scholar
  3. 3.
    Skulachev, V. P. (2006) Bioenergetic aspects of apoptosis, necrosis and mitoptosis, Apoptosis, 11, 473–485.PubMedCrossRefGoogle Scholar
  4. 4.
    Jarrett, S. G., and Boulton, M. E. (2012) Consequences of oxidative stress in age-related macular degeneration, Mol. Aspects Med., 33, 399–417.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Panfoli, I. (2012) Beneficial effect of antioxidants in retinopathies: a new hypothesis, Med. Hypothesis Discov. Innov. Ophthalmol., 1, 76–79.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Newell, F. W. (1992) Ophthalmology Principles and Concepts (Mosby, C. V., ed.) 7th Edn., St. Louis.Google Scholar
  7. 7.
    Winkler, B. S., Boulton, M. E., Gottsch, J. D., and Sternberg, P. (1999) Oxidative damage and age-related macular degeneration, Mol. Vis., 5, 32.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Emerit, J., Edeas, M., and Bricaire, F. (2004) Neurodegenerative diseases and oxidative stress, Biomed. Pharmacother., 58, 39–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Roth, F., Bindewald, A., and Holz, F. G. (2004) Key pathophysiological pathways in age-related macular disease, Graefes Arch. Clin. Exp. Ophthalmol., 242, 710–716.PubMedCrossRefGoogle Scholar
  10. 10.
    Kopitz, J., Holz, F. G., Kaemmerer, E., and Schutt, F. (2004) Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration, Biochimie, 86, 825–831.PubMedCrossRefGoogle Scholar
  11. 11.
    Tanito, M., Nishiyama, A., Tanaka, T., Masutani, H., Nakamura, H., Yodoi, J., and Ohira, A. (2002) Change of redox status and modulation by thiol replenishment in retinal photooxidative damage, Invest. Ophthalmol. Vis. Sci., 43, 2392–2400.PubMedGoogle Scholar
  12. 12.
    Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A., Grigorian, E. N., Grishanova, A. Y., Iomdina, E. N., Ivashchenko, Zh. N., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Y. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. V., Shchipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Agerelated eye disease. SkQ1 returns vision to blind animals, Biochemistry (Moscow), 73, 1317–1328.CrossRefGoogle Scholar
  13. 13.
    Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry (Moscow), 73, 1273–1287.CrossRefGoogle Scholar
  14. 14.
    Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Y., Fetisova, E. K., Ivanova, O. Y., Kalinina, N. I., Khromova, N. V., Kopnin, B. P., Kopnin, P. B., Korotetskaya, M. V., Lichinitser, M. R., Lukashev, A. L., Pletjushkina, O. Y., Popova, E. N., Skulachev, M. V., Shagieva, G. S., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasiliev, J. M., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells, Biochemistry (Moscow), 73, 1300–1316.CrossRefGoogle Scholar
  15. 15.
    Grigoryan, E. N., Novikova, Y. P., Gancharova, O. S., Kilina, O. V., and Philippov, P. P. (2012) New antioxidant SkQ1 is an effective protector of rat eye retinal pigment epithelium and choroid under conditions of long-term organotypic cultivation, Adv. Aging Res., 1, 31–37.CrossRefGoogle Scholar
  16. 16.
    Grigoryan, E., Novikova, Y., Kilina, O., and Philippov, P. (2013) New antioxidant SkQ1 is an effective protector of rat neural retina under conditions of long-term organotypic cultivation, Adv. Aging Res., 2, 65–71.CrossRefGoogle Scholar
  17. 17.
    Noell, W. K., Walker, V. S., Kang, B. S., and Berman, S. (1966) Retinal damage by light in rats, Invest. Ophthalmol., 5, 450–473.PubMedGoogle Scholar
  18. 18.
    Stone, J., Maslim, J., Valter-Kocsi, K., Mervin, K., Bowers, F., Chu, Y., Barnett, N., Provis, J., Lewis, G., Fisher, S. K., Bisti, S., Gargini, C., Cervetto, L., Merin, S., and Peer, J. (1999) Mechanisms of photoreceptor death and survival in mammalian retina, Prog. Retin. Eye Res., 18, 689–735.PubMedCrossRefGoogle Scholar
  19. 19.
    Komarek, V., Gembardt, C., Krinke, A.-L., Mahrous, T., and Schaetti, P. (2000) Synopsis of the organ anatomy, in The Laboratory Rat (Krinke, G., ed.) Academic Press, San Diego, pp. 283–319.CrossRefGoogle Scholar
  20. 20.
    Wasowicz, M., Morice, C., Ferrari, P., Callebert, J., and Versaux-Botteri, C. (2002) Long-term effects of light damage on the retina of albino and pigmented rats, Invest. Ophthalmol. Vis. Sci., 43, 813–820.PubMedGoogle Scholar
  21. 21.
    Bennett, M. H., Dyer, R. F., and Dunn, J. D. (1972) Light induced retinal degeneration: effect upon light-dark discrimination, Exp. Neurol., 34, 434–445.PubMedCrossRefGoogle Scholar
  22. 22.
    Williams, R. A., Howard, A. G., and Williams, T. P. (1985) Retinal injury on pigmented and albino rats exposed to low intensive cyclic light after unique mydriatic influence, Curr. Eye Res., 4, 97–102.PubMedCrossRefGoogle Scholar
  23. 23.
    Williams, T. P., and Howell, W. L. (1983) Action spectrum of retinal light-damage in albino rats, Invest. Ophthalmol. Vis. Sci., 24, 285–287.PubMedGoogle Scholar
  24. 24.
    Marc, R. E., Jones, B. W., Watt, C. B., Vazquez-Chona, F., Vaughan, D. K., and Organisciak, D. T. (2008) Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration, Mol. Vis., 14, 782–806.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Abler, A. S., Chang, C. J., Ful, J., Tso, M. O., and Lam, T. T. (1996) Photic injury triggers apoptosis of photoreceptor cells, Res. Commun. Mol. Pathol. Pharmacol., 92, 177–189.PubMedGoogle Scholar
  26. 26.
    Lin, Y., Jones, B. W., Liu, A., Vazquez-Chona, F. R., Lauritzen, J. S., Ferrell, W. D., and Marc, R. E. (2012) Rapid glutamate receptor 2 trafficking during retinal degeneration, Mol. Neurodegener., 7, 7.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kuwabara, T., and Gorn, R. A. (1968) Retinal damage by visible light. An electron microscopic study, Arch. Ophthalmol., 79, 69–78.PubMedCrossRefGoogle Scholar
  28. 28.
    Schmidt, R. E., and Zuclich, J. A. (1980) Retinal lesions due to ultraviolet laser exposure, Invest. Ophthalmol. Vis. Sci., 19, 1166–1175.PubMedGoogle Scholar
  29. 29.
    De Vera Mudry, M. C., Kronenberg, S., Komatsu, S., and Aguirre, G. D. (2013) Blinded by the light: retinal phototoxicity in the context of safety studies, Toxicol. Pathol., 41, 813–825.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hafezi, F., Marti, A., Munz, K., and Reme, C. E. (1997) Light-induced apoptosis: differential timing in the retina and pigment epithelium, Exp. Eye Res., 64, 963–970.PubMedCrossRefGoogle Scholar
  31. 31.
    Wenzel, A., Grimm, C., Samardzija, M., and Reme, C. E. (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration, Prog. Retin. Eye Res., 24, 275–306.PubMedCrossRefGoogle Scholar
  32. 32.
    Costa, B. L., Fawcett, R., Li, G.-Y., Safa, R., and Osborne, N. N. (2008) Orally administered epigallocatechin gallate attenuates light-induced photoreceptor damage, Brain Res. Bull., 76, 412–423.PubMedCrossRefGoogle Scholar
  33. 33.
    Mandal, M. N. A., Patlolla, J. M. R., Zheng, L., Agbaga, M.-P., Tran, J.-T. A., Wicker, L., Kasus-Jacobi, A., Elliott, M. H., Rao, C. V., and Anderson, R. E. (2009) Curcumin protects retinal cells from light- and oxidant stress-induced cell death, Free Radic. Biol. Med., 46, 672–679.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Tanito, M., Li, F., Elliott, M. H., Dittmar, M., and Anderson, R. E. (2007) Protective effect of TEMPOL derivatives against light-induced retinal damage in rats, Invest. Ophthalmol. Vis. Sci., 48, 1900–1905.PubMedCrossRefGoogle Scholar
  35. 35.
    Lewis, G. P., Guerin, C. J., Anderson, D. H., Matsumoto, B., and Fisher, S. K. (1994) Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment, Am. J. Ophthalmol., 118, 368–376.PubMedCrossRefGoogle Scholar
  36. 36.
    Fisher, S. K., Erickson, P. A., Lewis, G. P., and Anderson, D. H. (1991) Intraretinal proliferation induced by retinal detachment, Invest. Ophthalmol. Vis. Sci., 32, 1739–1748.PubMedGoogle Scholar
  37. 37.
    Bringmann, A., Pannicke, T., Grosche, J., Francke, M., Wiedemann, P., Skatchkov, S. N., Osborne, N. N., and Reichenbach, A. (2006) Muller cells in the healthy and diseased retina, Prog. Retin. Eye Res., 25, 397–424.PubMedCrossRefGoogle Scholar
  38. 38.
    Jadhav, A. P., Roesch, K., and Cepko, C. L. (2009) Development and neurogenic potential of Muller glial cells in the vertebrate retina, Prog. Retin. Eye Res., 28, 249–262.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Cachafeiro, M., Bemelmans, A. P., Samardzija, M., Afanasieva, T., Pournaras, J. A., Grimm, C., Kostic, C., Philippe, S., Wenzel, A., and Arsenijevic, Y. (2013) Hyperactivation of retina by light in mice leads to photoreceptor cell death mediated by VEGF and retinal pigment epithelium permeability, Cell Death Dis., 4, e781.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Greenwood, J. (1992) The blood-retinal barrier in experimental autoimmune uveoretinitis (EAU): a review, Curr. Eye Res, 11(Suppl.), 25–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Perche, O., Doly, M., and Ranchon-Cole, I. (2007) Caspase-dependent apoptosis in light-induced retinal degeneration, Invest. Ophthalmol. Vis. Sci., 48, 2753–2759.PubMedCrossRefGoogle Scholar
  42. 42.
    Antonenko, Y. N., Roginsky, V. A., Pashkovskaya, A. A., Rokitskaya, T. I., Kotova, E. A., Zaspa, A. A., Chernyak, B. V., and Skulachev, V. P. (2008) Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments, J. Membr. Biol., 222, 141–149.PubMedCrossRefGoogle Scholar
  43. 43.
    Chernyak, B. V., Izyumov, D. S., Lyamzaev, K. G., Pashkovskaya, A. A., Pletjushkina, O. Y., Antonenko, Y. N., Sakharov, D. V., Wirtz, K. W. A., and Skulachev, V. P. (2006) Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress, Biochim. Biophys. Acta, 1757, 525–534.PubMedCrossRefGoogle Scholar
  44. 44.
    Gordon, W. C., Casey, D. M., Lukiw, W. J., and Bazan, N. G. (2002) DNA damage and repair in light-induced photoreceptor degeneration, Invest. Ophthalmol. Vis. Sci., 43, 3511–3521.PubMedGoogle Scholar
  45. 45.
    Xia, X., Li, Y., Huang, D., Wang, Z., Luo, L., Song, Y., Zhao, L., and Wen, R. (2011) Oncostatin M protects rod and cone photoreceptors and promotes regeneration of cone outer segment in a rat model of retinal degeneration, PLoS One, 6, e18282.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Wen, R., Tao, W., Luo, L., Huang, D., Kauper, K., Stabila, P., LaVail, M. M., Laties, A. M., and Li, Y. (2012) Regeneration of cone outer segments induced by CNTF, Adv. Exp. Med. Biol., 723, 93–99.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Youssef, P. N., Sheibani, N., and Albert, D. M. (2011) Retinal light toxicity, Eye, 25, 1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Forooghian, F., Stetson, P. F., Gross, N. E., and Meyerle, C. B. (2010) Quantitative assessment of photoreceptor recovery in atypical multiple evanescent white dot syndrome, Ophthalm. Surg. Lasers Imag., 41(Suppl.), 77–80.CrossRefGoogle Scholar
  49. 49.
    Tanito, M., Kaidzu, S., Ohira, A., and Anderson, R. E. (2008) Topography of retinal damage in light-exposed albino rats, Exp. Eye Res., 87, 292–295.PubMedCrossRefGoogle Scholar
  50. 50.
    Organisciak, D. T., Darrow, R. M., Rapp, C. M., Smuts, J. P., Armstrong, D. W., and Lang, J. C. (2013) Prevention of retinal light damage by zinc oxide combined with rosemary extract, Mol. Vis., 19, 1433–1445.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Ojino, K., Shimazawa, M., Ohno, Y., Otsuka, T., Tsuruma, K., and Hara, H. (2014) Protective effect of SUN N8075, a free radical scavenger, against excessive light-induced retinal damage in mice, Biol. Pharm. Bull., 37, 424–430.PubMedCrossRefGoogle Scholar
  52. 52.
    Arnault, E., Barrau, C., Nanteau, C., Gondouin, P., Bigot, K., Vienot, F., Gutman, E., Fontaine, V., Villette, T., Cohen-Tannoudji, D., Sahel, J.-A., and Picaud, S. (2013) Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions, PLoS One, 8, e71398.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kernt, M., Thiele, S., Neubauer, A. S., Koenig, S., Hirneiss, C., Haritoglou, C., Ulbig, M. W., and Kampik, A. (2012) Inhibitory activity of ranibizumab, sorafenib, and pazopanib on light-induced overexpression of plateletderived growth factor and vascular endothelial growth factor A and the vascular endothelial growth factor A receptors 1 and 2 and neuropilin 1 and 2, Retina, 32, 1652–1663.PubMedCrossRefGoogle Scholar
  54. 54.
    Saprunova, V. B., Pilipenko, D. I., Alexeevsky, A. V., Fursova, A. Z., Kolosova, N. G., and Bakeeva, L. E. (2010) Lipofuscin granule dynamics during development of agerelated macular degeneration, Biochemistry (Moscow), 75, 130–138.CrossRefGoogle Scholar
  55. 55.
    Markovets, A. M., Fursova, A. Z., and Kolosova, N. G. (2011) Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression, PLoS One, 6, e21682.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Koltzov Institute of Developmental BiologyMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations