Biochemistry (Moscow)

, Volume 79, Issue 10, pp 1081–1100 | Cite as

Prevention of peroxidation of cardiolipin liposomes by quinol-based antioxidants

  • A. V. Lokhmatikov
  • N. E. Voskoboynikova
  • D. A. Cherepanov
  • N. V. Sumbatyan
  • G. A. Korshunova
  • M. V. Skulachev
  • H. -J. Steinhoff
  • V. P. Skulachev
  • A. Y. MulkidjanianEmail author


In mammalian mitochondria, cardiolipin molecules are the primary targets of oxidation by reactive oxygen species. The interaction of oxidized cardiolipin molecules with the constituents of the apoptotic cascade may lead to cell death. In the present study, we compared the effects of quinol-containing synthetic and natural amphiphilic antioxidants on cardiolipin peroxidation in a model system (liposomes of bovine cardiolipin). We found that both natural ubiquinol and synthetic antioxidants, even being introduced in micro- and submicromolar concentrations, fully protected the liposomal cardiolipin from peroxidation. The duration of their action, however, varied; it increased with the presence of either methoxy groups of ubiquinol or additional reduced redox groups (in the cases of rhodamine and berberine derivates). The concentration of ubiquinol in the mitochondrial membrane substantially exceeds the concentrations of antioxidants we used and would seem to fully prevent peroxidation of membrane cardiolipin. In fact, this does not happen: cardiolipin in mitochondria is oxidized, and this process can be blocked by amphiphilic cationic antioxidants (Y. N. Antonenko et al. (2008) Biochemistry (Moscow), 73, 1273–1287). We suppose that a fraction of mitochondrial cardiolipin could not be protected by natural ubiquinol; in vivo, peroxidation most likely threatens those cardiolipin molecules that, being bound within complexes of membrane proteins, are inaccessible to the bulky hydrophobic ubiquinol molecules diffusing in the lipid bilayer of the inner mitochondrial membrane. The ability to protect these occluded cardiolipin molecules from peroxidation may explain the beneficial therapeutic action of cationic antioxidants, which accumulate electrophoretically within mitochondria under the action of membrane potential.

Key words

apoptosis respiratory supercomplexes reactive oxygen species penetrating cations plastoquinol SkQ1 








C11-BODIPY 581/591

4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid












methyl linoleate










reactive oxygen species


compounds composed of penetrating cation and quinone


reduced (quinol) forms of SkQ










10-(plastoquinonyl-6)decyldihydrorhodamine 19


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Skulachev, V. P. (1997) Membrane-linked systems preventing superoxide formation, Biosci. Rep., 17, 347–366.PubMedGoogle Scholar
  2. 2.
    Ames, B. N., Shigenaga, M. K., and Hagen, T. M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. USA, 90, 7915–7922.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Halliwell, B., and Gutteridge, J. M. (1990) Role of free radicals and catalytic metal ions in human disease: an overview, Methods Enzymol., 186, 1–85.PubMedGoogle Scholar
  4. 4.
    Halliwell, B., and Gutteridge, J. M. (1985) The importance of free radicals and catalytic metal ions in human diseases, Mol. Aspects Med., 8, 89–193.PubMedGoogle Scholar
  5. 5.
    Kujoth, G. C., Hiona, A., Pugh, T. D., Someya, S., Panzer, K., Wohlgemuth, S. E., Hofer, T., Seo, A. Y., Sullivan, R., Jobling, W. A., Morrow, J. D., Van Remmen, H., Sedivy, J. M., Yamasoba, T., Tanokura, M., Weindruch, R., Leeuwenburgh, C., and Prolla, T. A. (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging, Science, 309, 481–484.PubMedGoogle Scholar
  6. 6.
    Wang, C., and Youle, R. J. (2009) The role of mitochondria in apoptosis, Annu. Rev. Genet., 43, 95–118.PubMedGoogle Scholar
  7. 7.
    Skulachev, V. P. (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell, FEBS Lett., 397, 7–10.PubMedGoogle Scholar
  8. 8.
    Skulachev, V. P. (2002) Programmed death phenomena: from organelle to organism, Ann. N. Y. Acad. Sci., 959, 214–237.PubMedGoogle Scholar
  9. 9.
    Chance, B., Sies, H., and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs, Physiol. Rev., 59, 527–605.PubMedGoogle Scholar
  10. 10.
    Andreyev, A. Y., Kushnareva, Y. E., and Starkov, A. A. (2005) Mitochondrial metabolism of reactive oxygen species, Biochemistry (Moscow), 70, 200–214.Google Scholar
  11. 11.
    Kushnareva, Y., Murphy, A. N., and Andreyev, A. (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidationreduction state, Biochem. J., 368, 545–553.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Esterhazy, D., King, M. S., Yakovlev, G., and Hirst, J. (2008) Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria, Biochemistry, 47, 3964–3971.PubMedGoogle Scholar
  13. 13.
    Drose, S., and Brandt, U. (2008) The mechanism of mitochondrial superoxide production by the cytochrome bc 1 complex, J. Biol. Chem., 283, 21649–21654.PubMedGoogle Scholar
  14. 14.
    Yin, Y., Yang, S., Yu, L., and Yu, C. A. (2010) Reaction mechanism of superoxide generation during ubiquinol oxidation by the cytochrome bc 1 complex, J. Biol. Chem., 285, 17038–17045.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Malinska, D., Kulawiak, B., Kudin, A. P., Kovacs, R., Huchzermeyer, C., Kann, O., Szewczyk, A., and Kunz, W. S. (2010) Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation, Biochim. Biophys. Acta, 1797, 1163–1170.PubMedGoogle Scholar
  16. 16.
    Boveris, A., and Chance, B. (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen, Biochem. J., 134, 707–716.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Turrens, J. F., and Boveris, A. (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria, Biochem. J., 191, 421–427.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15–18.PubMedGoogle Scholar
  19. 19.
    Ksenzenko, M., Konstantinov, A. A., Khomutov, G. B., Tikhonov, A. N., and Ruuge, E. K. (1983) Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc 1 site of the mitochondrial respiratory chain, FEBS Lett., 155, 19–24.PubMedGoogle Scholar
  20. 20.
    Han, D., Williams, E., and Cadenas, E. (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space, Biochem. J., 353, 411–416.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., Smith, R. A., and Murphy, M. P. (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties, J. Biol. Chem., 276, 4588–4596.PubMedGoogle Scholar
  22. 22.
    Asin-Cayuela, J., Manas, A. R., James, A. M., Smith, R. A., and Murphy, M. P. (2004) Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant, FEBS Lett., 571, 9–16.PubMedGoogle Scholar
  23. 23.
    James, A. M., Cocheme, H. M., Smith, R. A., and Murphy, M. P. (2005) Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools, J. Biol. Chem., 280, 21295–21312.PubMedGoogle Scholar
  24. 24.
    Jiang, J., Stoyanovsky, D. A., Belikova, N. A., Tyurina, Y. Y., Zhao, Q., Tungekar, M. A., Kapralova, V., Huang, Z., Mintz, A. H., Greenberger, J. S., and Kagan, V. E. (2009) A mitochondria-targeted triphenylphosphonium-conjugated nitroxide functions as a radioprotector/mitigator, Radiat. Res., 172, 706–717.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Jiang, J., Kurnikov, I., Belikova, N. A., Xiao, J., Zhao, Q., Amoscato, A. A., Braslau, R., Studer, A., Fink, M. P., Greenberger, J. S., Wipf, P., and Kagan, V. E. (2007) Structural requirements for optimized delivery, inhibition of oxidative stress, and antiapoptotic activity of targeted nitroxides, J. Pharmacol. Exp. Ther., 320, 1050–1060.PubMedGoogle Scholar
  26. 26.
    Huang, Z., Jiang, J., Belikova, N. A., Stoyanovsky, D. A., Kagan, V. E., and Mintz, A. H. (2010) Protection of normal brain cells from gamma-irradiation-induced apoptosis by a mitochondria-targeted triphenyl-phosphoniumnitroxide: a possible utility in glioblastoma therapy, J. Neurooncol., 100, 1–8.PubMedGoogle Scholar
  27. 27.
    Fink, M. P., Macias, C. A., Xiao, J., Tyurina, Y. Y., Jiang, J., Belikova, N., Delude, R. L., Greenberger, J. S., Kagan, V. E., and Wipf, P. (2007) Hemigramicidin-TEMPO conjugates: novel mitochondria-targeted antioxidants, Biochem. Pharmacol., 74, 801–809.PubMedGoogle Scholar
  28. 28.
    Jiang, J., Belikova, N. A., Hoye, A. T., Zhao, Q., Epperly, M. W., Greenberger, J. S., Wipf, P., and Kagan, V. E. (2008) A mitochondria-targeted nitroxide/hemigramicidin S conjugate protects mouse embryonic cells against gamma irradiation, Int. J. Radiat. Oncol. Biol. Phys., 70, 816–825.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Ji, J., Kline, A. E., Amoscato, A., Samhan-Arias, A. K., Sparvero, L. J., Tyurin, V. A., Tyurina, Y. Y., Fink, B., Manole, M. D., Puccio, A. M., Okonkwo, D. O., Cheng, J. P., Alexander, H., Clark, R. S., Kochanek, P. M., Wipf, P., Kagan, V. E., and Bayir, H. (2012) Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury, Nat. Neurosci., 15, 1407–1413.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Skulachev, V. P. (2007) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects, Biochemistry (Moscow), 72, 1385–1396.Google Scholar
  31. 31.
    Green, D. E. (1974) The electromechanochemical model for energy coupling in mitochondria, Biochim. Biophys. Acta, 346, 27–78.PubMedGoogle Scholar
  32. 32.
    Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076–1078.PubMedGoogle Scholar
  33. 33.
    Liberman, E. A., and Skulachev, V. P. (1970) Conversion of biomembrane-produced energy into electric form. IV. General discussion, Biochim. Biophys. Acta, 216, 30–42.PubMedGoogle Scholar
  34. 34.
    Severin, S. E., Skulachev, V. P., and Yaguzhinsky, L. S. (1970) Possible role of carnitine in transport of fatty acids through mitochondrial membranes, Biochemistry (Moscow), 35, 1250–1253.Google Scholar
  35. 35.
    Levitsky, D. O., and Skulachev, V. P. (1972) Carnitine: the carrier transporting fatty acyls into mitochondria by means of an electrochemical gradient of H+, Biochim. Biophys. Acta, 275, 33–50.PubMedGoogle Scholar
  36. 36.
    Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies, Biochemistry (Moscow), 73, 1273–1287.Google Scholar
  37. 37.
    Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.PubMedGoogle Scholar
  38. 38.
    Rokitskaya, T. I., Klishin, S. S., Severina, I. I., Skulachev, V. P., and Antonenko, Y. N. (2008) Kinetic analysis of permeation of mitochondria-targeted antioxidants across bilayer lipid membranes, J. Membr. Biol., 224, 9–19.PubMedGoogle Scholar
  39. 39.
    Lyamzaev, K. G., Pustovidko, A. V., Simonyan, R. A., Rokitskaya, T. I., Domnina, L. V., Ivanova, O. Y., Severina, I. I., Sumbatyan, N. V., Korshunova, G. A., Tashlitsky, V. N., Roginsky, V. A., Antonenko, Y. N., Skulachev, M. V., Chernyak, B. V., and Skulachev, V. P. (2011) Novel mitochondria-targeted antioxidants: plastoquinone conjugated with cationic plant alkaloids berberine and palmatine, Pharm. Res., 28, 2883–2895.PubMedGoogle Scholar
  40. 40.
    Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs), Biochim. Biophys. Acta, 1797, 878–889.PubMedGoogle Scholar
  41. 41.
    Skulachev, V. P. (2013) Cationic antioxidants as a powerful tool against mitochondrial oxidative stress, Biochem. Biophys. Res. Commun., 441, 275–279.PubMedGoogle Scholar
  42. 42.
    Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Jr., Zorov, D. B., and Skulachev, V. P. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies, Curr. Drug Targets, 12, 800–826.PubMedGoogle Scholar
  43. 43.
    Gu, L. Q., Yu, L., and Yu, C. A. (1990) Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives, Biochim. Biophys. Acta, 1015, 482–492.PubMedGoogle Scholar
  44. 44.
    Antonenko, Y. N., Avetisyan, A. V., Cherepanov, D. A., Knorre, D. A., Korshunova, G. A., Markova, O. V., Ojovan, S. M., Perevoshchikova, I. V., Pustovidko, A. V., Rokitskaya, T. I., Severina, I. I., Simonyan, R. A., Smirnova, E. A., Sobko, A. A., Sumbatyan, N. V., Severin, F. F., and Skulachev, V. P. (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers, J. Biol. Chem., 286, 17831–17840.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Plotnikov, E. Y., Chupyrkina, A. A., Jankauskas, S. S., Pevzner, I. B., Silachev, D. N., Skulachev, V. P., and Zorov, D. B. (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion, Biochim. Biophys. Acta, 1812, 77–86.PubMedGoogle Scholar
  46. 46.
    Skulachev, V. P. (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases, J. Alzheimers Dis., 28, 283–289.PubMedGoogle Scholar
  47. 47.
    Jankauskas, S. S., Plotnikov, E. Y., Morosanova, M. A., Pevzner, I. B., Zorova, L. D., Skulachev, V. P., and Zorov, D. B. (2012) Mitochondria-targeted antioxidant SkQR1 ameliorates gentamycin-induced renal failure and hearing loss, Biochemistry (Moscow), 77, 666–670.Google Scholar
  48. 48.
    Kolosova, N. G., Stefanova, N. A., Muraleva, N. A., and Skulachev, V. P. (2012) The mitochondria-targeted antioxidant SkQ1 but not N-acetylcysteine reverses aging-related biomarkers in rats, Aging (Albany NY), 4, 686–694.Google Scholar
  49. 49.
    Silachev, D. N., Isaev, N. K., Pevzner, I. B., Zorova, L. D., Stelmashook, E. V., Novikova, S. V., Plotnikov, E. Y., Skulachev, V. P., and Zorov, D. B. (2012) The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk, PLoS One, 7, e51553.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Kapay, N. A., Popova, O. V., Isaev, N. K., Stelmashook, E. V., Kondratenko, R. V., Zorov, D. B., Skrebitsky, V. G., and Skulachev, V. P. (2013) Mitochondria-targeted plastoquinone antioxidant SkQ1 prevents amyloid-beta-induced impairment of long-term potentiation in rat hippocampal slices, J. Alzheimers Dis., 36, 377–383.PubMedGoogle Scholar
  51. 51.
    Severina, I. I., Severin, F. F., Korshunova, G. A., Sumbatyan, N. V., Ilyasova, T. M., Simonyan, R. A., Rogov, A. G., Trendeleva, T. A., Zvyagilskaya, R. A., Dugina, V. B., Domnina, L. V., Fetisova, E. K., Lyamzaev, K. G., Vyssokikh, M. Y., Chernyak, B. V., Skulachev, M. V., Skulachev, V. P., and Sadovnichii, V. A. (2013) In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives, FEBS Lett., 587, 2018–2024.PubMedGoogle Scholar
  52. 52.
    Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., Kazachenko, A. V., Kirpatovsky, V. I., Kozlovsky, S. V., Lakomkin, V. L., Levina, S. B., Pisarenko, O. I., Plotnikov, E. Y., Saprunova, V. B., Serebryakova, L. I., Skulachev, M. V., Stelmashook, E. V., Studneva, I. M., Tskitishvili, O. V., Vasilyeva, A. K., Victorov, I. V., Zorov, D. B., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke), Biochemistry (Moscow), 73, 1288–1299.Google Scholar
  53. 53.
    Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Y., Fetisova, E. K., Ivanova, O. Y., Kalinina, N. I., Khromova, N. V., Kopnin, B. P., Kopnin, P. B., Korotetskaya, M. V., Lichinitser, M. R., Lukashev, A. L., Pletjushkina, O. Y., Popova, E. N., Skulachev, M. V., Shagieva, G. S., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasiliev, J. M., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells, Biochemistry (Moscow), 73, 1300–1316.Google Scholar
  54. 54.
    Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A. Z., Grigorian, E. N., Grishanova, A. Y., Iomdina, E. N., Ivashchenko, Z. N., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Y. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. V., Shchipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Agerelated eye disease. SkQ1 returns vision to blind animals, Biochemistry (Moscow), 73, 1317–1328.Google Scholar
  55. 55.
    Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Y., Saprunova, V. B., Samoylova, T. A., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 prolongs lifespan and prevents development of traits of senescence, Biochemistry (Moscow), 73, 1329–1342.Google Scholar
  56. 56.
    Kagan, V. E., Tyurin, V. A., Jiang, J., Tyurina, Y. Y., Ritov, V. B., Amoscato, A. A., Osipov, A. N., Belikova, N. A., Kapralov, A. A., Kini, V., Vlasova, I. I., Zhao, Q., Zou, M., Di, P., Svistunenko, D. A., Kurnikov, I. V., and Borisenko, G. G. (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors, Nat. Chem. Biol., 1, 223–232.PubMedGoogle Scholar
  57. 57.
    Wang, H. Y., Jackson, S. N., and Woods, A. S. (2007) Direct MALDI-MS analysis of cardiolipin from rat organs sections, J. Am. Soc. Mass. Spectrom., 18, 567–577.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Kiebish, M. A., Han, X., Cheng, H., Lunceford, A., Clarke, C. F., Moon, H., Chuang, J. H., and Seyfried, T. N. (2008) Lipidomic analysis and electron transport chain activities in C57BL/6J mouse brain mitochondria, J. Neurochem., 106, 299–312.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Haines, T. H. (2009) A new look at cardiolipin, Biochim. Biophys. Acta, 1788, 1997–2002.PubMedGoogle Scholar
  60. 60.
    Gonzalvez, F., and Gottlieb, E. (2007) Cardiolipin: setting the beat of apoptosis, Apoptosis, 12, 877–885.PubMedGoogle Scholar
  61. 61.
    Kapralov, A. A., Kurnikov, I. V., Vlasova, I. I., Belikova, N. A., Tyurin, V. A., Basova, L. V., Zhao, Q., Tyurina, Y. Y., Jiang, J., Bayir, H., Vladimirov, Y. A., and Kagan, V. E. (2007) The hierarchy of structural transitions induced in cytochrome c by anionic phospholipids determines its peroxidase activation and selective peroxidation during apoptosis in cells, Biochemistry, 46, 14232–14244.PubMedGoogle Scholar
  62. 62.
    Vladimirov, Y. A., Proskurnina, E. V., Izmailov, D. Y., Novikov, A. A., Brusnichkin, A. V., Osipov, A. N., and Kagan, V. E. (2006) Cardiolipin activates cytochrome c peroxidase activity since it facilitates H2O2 access to heme, Biochemistry (Moscow), 71, 998–1005.Google Scholar
  63. 63.
    Shao, H., Li, J., Zhou, Y., Ge, Z., Fan, J., Shao, Z., and Zeng, Y. (2008) Dose-dependent protective effect of propofol against mitochondrial dysfunction in ischemic/reperfused rat heart: role of cardiolipin, Br. J. Pharmacol., 153, 1641–1649.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Atkinson, J., Kapralov, A. A., Yanamala, N., Tyurina, Y. Y., Amoscato, A. A., Pearce, L., Peterson, J., Huang, Z., Jiang, J., Samhan-Arias, A. K., Maeda, A., Feng, W., Wasserloos, K., Belikova, N. A., Tyurin, V. A., Wang, H., Fletcher, J., Wang, Y., Vlasova, I. I., Klein-Seetharaman, J., Stoyanovsky, D. A., Bayir, H., Pitt, B. R., Epperly, M. W., Greenberger, J. S., and Kagan, V. E. (2011) A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death, Nat. Commun., 2, 497.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Kagan, V. E., Wipf, P., Stoyanovsky, D., Greenberger, J. S., Borisenko, G., Belikova, N. A., Yanamala, N., Samhan Arias, A. K., Tungekar, M. A., Jiang, J., Tyurina, Y. Y., Ji, J., Klein-Seetharaman, J., Pitt, B. R., Shvedova, A. A., and Bayir, H. (2009) Mitochondrial targeting of electron scavenging antioxidants: regulation of selective oxidation vs random chain reactions, Adv. Drug Deliv. Rev., 61, 1375–1385.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Antonenko, Y. N., Roginsky, V. A., Pashkovskaya, A. A., Rokitskaya, T. I., Kotova, E. A., Zaspa, A. A., Chernyak, B. V., and Skulachev, V. P. (2008) Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments, J. Membr. Biol., 222, 141–149.PubMedGoogle Scholar
  67. 67.
    Roginsky, V. A., Tashlitsky, V. N., and Skulachev, V. P. (2009) Chain-breaking antioxidant activity of reduced forms of mitochondria-targeted quinones, a novel type of geroprotectors, Aging (Albany NY), 1, 481–489.Google Scholar
  68. 68.
    Roginsky, V. A. (2010) Oxidizability of cardiac cardiolipin in Triton X-100 micelles as determined by using a Clark electrode, Chem. Phys. Lipids, 163, 127–130.PubMedGoogle Scholar
  69. 69.
    Murphy, M. P., and Smith, R. A. (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations, Annu. Rev. Pharmacol. Toxicol., 47, 629–656.PubMedGoogle Scholar
  70. 70.
    Goessens, W. H., Driessen, A. J., Wilschut, J., and van Duin, J. (1988) A synthetic peptide corresponding to the C-terminal 25 residues of phage MS2 coded lysis protein dissipates the proton-motive force in Escherichia coli membrane vesicles by generating hydrophilic pores, EMBO J., 7, 867–873.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Rich, P. R. (1984) Electron and proton transfers through quinones and cytochrome bc complexes, Biochim. Biophys. Acta, 768, 53–79.PubMedGoogle Scholar
  72. 72.
    Noguchi, N., Yamashita, H., Gotoh, N., Yamamoto, Y., Numano, R., and Niki, E. (1998) 2,2′-Azobis(4-methoxy-2,4-dimethylvaleronitrile), a new lipid-soluble azo initiator: application to oxidations of lipids and low-density lipoprotein in solution and in aqueous dispersions, Free Radic. Biol. Med., 24, 259–268.PubMedGoogle Scholar
  73. 73.
    Yamamoto, Y., Niki, E., Kamiya, Y., and Shimasaki, H. (1984) Oxidation of lipids. 7. Oxidation of phosphatidylcholines in homogeneous solution and in water dispersion, Biochim. Biophys. Acta, 795, 332–340.PubMedGoogle Scholar
  74. 74.
    Elferink, M. G., de Wit, J. G., Driessen, A. J., and Konings, W. N. (1994) Stability and proton-permeability of liposomes composed of archaeal tetraether lipids, Biochim. Biophys. Acta, 1193, 247–254.PubMedGoogle Scholar
  75. 75.
    Barclay, L. R. C., and Vinqvist, M. R. (2003) Phenols as antioxidants, in The Chemistry of Phenols, John Wiley & Sons, Ltd., pp. 839–908.Google Scholar
  76. 76.
    Loshadkin, D., Roginsky, V., and Pliss, E. (2002) Substituted p-hydroquinones as a chain-breaking antioxidant during the oxidation of styrene, Int. J. Chem. Kinet., 34, 162–171.Google Scholar
  77. 77.
    Pratt, D. A., Tallman, K. A., and Porter, N. A. (2011) Free radical oxidation of polyunsaturated lipids: new mechanistic insights and the development of peroxyl radical clocks, Acc. Chem. Res., 44, 458–467.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Barclay, L. R. C., and Ingold, K. U. (1981) Autooxidation of biological molecules. 2. The autooxidation of a model membrane — a comparison of the autooxidation of egg lecithin phosphatidylcholine in water and in chlorobenzene, J. Am. Chem. Soc., 103, 6478–6485.Google Scholar
  79. 79.
    Culbertson, S. M., Vinqvist, M. R., Barclay, L. R., and Porter, N. A. (2001) Minimizing tocopherol-mediated radical phase transfer in low-density lipoprotein oxidation with an amphiphilic unsymmetrical azo initiator, J. Am. Chem. Soc., 123, 8951–8960.PubMedGoogle Scholar
  80. 80.
    Roginsky, V. A. (2003) Chain-breaking antioxidant activity of natural polyphenols as determined during the chain oxidation of methyl linoleate in Triton X-100 micelles, Arch. Biochem. Biophys., 414, 261–270.PubMedGoogle Scholar
  81. 81.
    Vossen, R. C., van Dam-Mieras, M. C., Hornstra, G., and Zwaal, R. F. (1993) Continuous monitoring of lipid peroxidation by measuring conjugated diene formation in an aqueous liposome suspension, Lipids, 28, 857–861.PubMedGoogle Scholar
  82. 82.
    Esterbauer, H., Striegl, G., Puhl, H., and Rotheneder, M. (1989) Continuous monitoring of in vitro oxidation of human low density lipoprotein, Free Radic. Res. Commun., 6, 67–75.PubMedGoogle Scholar
  83. 83.
    Liu, W., Porter, N. A., Schneider, C., Brash, A. R., and Yin, H. (2011) Formation of 4-hydroxynonenal from cardiolipin oxidation: intramolecular peroxyl radical addition and decomposition, Free Radic. Biol. Med., 50, 166–178.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Kim, J., Minkler, P. E., Salomon, R. G., Anderson, V. E., and Hoppel, C. L. (2011) Cardiolipin: characterization of distinct oxidized molecular species, J. Lipid Res., 52, 125–135.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Yin, H., and Zhu, M. (2012) Free radical oxidation of cardiolipin: chemical mechanisms, detection and implication in apoptosis, mitochondrial dysfunction and human diseases, Free Radic. Res., 46, 959–974.PubMedGoogle Scholar
  86. 86.
    Kuhn, H., Salzmann-Reinhardt, U., Ludwig, P., Ponicke, K., Schewe, T., and Rapoport, S. (1986) The stoichiometry of oxygen uptake and conjugated diene formation during the dioxygenation of linoleic acid by the pure reticulocyte lipoxygenase. Evidence for aerobic hydroperoxidase activity, Biochim. Biophys. Acta, 876, 187–193.PubMedGoogle Scholar
  87. 87.
    Pryor, W. A., Cornicelli, J. A., Devall, L. J., Tait, B., Trivedi, B. K., Witiak, D. T., and Wu, M. D. (1993) A rapid screening-test to determine the antioxidant potencies of natural and synthetic antioxidants, J. Org. Chem., 58, 3521–3532.Google Scholar
  88. 88.
    Landi, L., Fiorentini, D., Stefanelli, C., Pasquali, P., and Pedulli, G. F. (1990) Inhibition of autooxidation of egg yolk phosphatidylcholine in homogenous solution and in liposomes by oxidized ubiquinone, Biochim. Biophys. Acta, 1028, 223–228.PubMedGoogle Scholar
  89. 89.
    Cape, J. L., Bowman, M. K., and Kramer, D. M. (2005) Reaction intermediates of quinol oxidation in a photoactivatable system that mimics electron transfer in the cytochrome bc 1 complex, J. Am. Chem. Soc., 127, 4208–4215.PubMedGoogle Scholar
  90. 90.
    Forquer, I., Covian, R., Bowman, M. K., Trumpower, B. L., and Kramer, D. M. (2006) Similar transition states mediate the Q-cycle and superoxide production by the cytochrome bc 1 complex, J. Biol. Chem., 281, 38459–38465.PubMedGoogle Scholar
  91. 91.
    O’Malley, P. J. (2002) The reaction profile for hydrogen atom transfer from phenol to peroxyl free radicals, Chem. Phys. Lett., 364, 318–322.Google Scholar
  92. 92.
    Singh, N., O’Malley, P. J., and Popelier, P. L. (2005) Mechanistic aspects of hydrogen abstraction for phenolic antioxidants. Electronic structure and topological electron density analysis, Phys. Chem. Chem. Phys., 7, 614–619.PubMedGoogle Scholar
  93. 93.
    Espinosa-Garcia, J., and Gutierrez-Merino, C. (2003) The trapping of the OH radical by coenzyme Q. A theoretical and experimental study, J. Phys. Chem., 107, 9712–9723.Google Scholar
  94. 94.
    Musialik, M., and Litwinienko, G. (2005) Scavenging of dpph* radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer, Org. Lett., 7, 4951–4954.PubMedGoogle Scholar
  95. 95.
    De Heer, M. I., Korth, H. G., and Mulder, P. (1999) Poly methoxy phenols in solution: O-H bond dissociation enthalpies, structures, and hydrogen bonding, J. Org. Chem., 64, 6969–6975.Google Scholar
  96. 96.
    De Heer, M. I., Mulder, P., Korth, H. G., Ingold, K. U., and Lusztyk, J. (2000) Hydrogen atom abstraction kinetics from intramolecularly hydrogen bonded ubiquinol-0 and other (poly)methoxy phenols, J. Am. Chem. Soc., 122, 2355–2360.Google Scholar
  97. 97.
    Pethig, R., Gascoyne, P. R., McLaughlin, J. A., and Szent-Gyorgyi, A. (1983) Ascorbate-quinone interactions: electrochemical, free radical, and cytotoxic properties, Proc. Natl. Acad. Sci. USA, 80, 129–132.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Roginsky, V. (2001) Superoxide dismutase enhances chain-breaking antioxidant capability of hydroquinones, Free Radic. Res., 35, 55–62.PubMedGoogle Scholar
  99. 99.
    Valgimigli, L., Amorati, R., Fumo, M. G., DiLabio, G. A., Pedulli, G. F., Ingold, K. U., and Pratt, D. A. (2008) The unusual reaction of semiquinone radicals with molecular oxygen, J. Org. Chem., 73, 1830–1841.PubMedGoogle Scholar
  100. 100.
    Toader, V., Xu, X., Nicolescu, A., Yu, L., Bolton, J. L., and Thatcher, G. R. (2003) Nitrosation, nitration, and autooxidation of the selective estrogen receptor modulator raloxifene by nitric oxide, peroxynitrite, and reactive nitrogen/oxygen species, Chem. Res. Toxicol., 16, 1264–1276.PubMedGoogle Scholar
  101. 101.
    Monkovic, I., and Spenser, I. D. (1965) Biosynthesis of berberine and berberastine — incorporation of catecholamines, Can. J. Chem., 43, 2017–2026.Google Scholar
  102. 102.
    Elliott, I. W. (1967) Conversion of berberinium chloride to stereoisomeric ophiocarpines, J. Heteroc. Chem., 4, 639–640.Google Scholar
  103. 103.
    Mikel’saar, K., Severina, I. I., and Skulachev, V. P. (1974) Phospholipids and oxidative phosphorylation, Usp. Sovrem. Biol., 78, 348–370.PubMedGoogle Scholar
  104. 104.
    Mileykovskaya, E., Penczek, P. A., Fang, J., Mallampalli, V. K., Sparagna, G. C., and Dowhan, W. (2012) Arrangement of the respiratory chain complexes in Saccharomyces cerevisiae supercomplex III2IV2 revealed by single particle cryoelectron microscopy, J. Biol. Chem., 287, 23095–23103.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Althoff, T., Mills, D. J., Popot, J. L., and Kuhlbrandt, W. (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1, EMBO J., 30, 4652–4664.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Zhang, M., Mileykovskaya, E., and Dowhan, W. (2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane, J. Biol. Chem., 277, 43553–43556.PubMedGoogle Scholar
  107. 107.
    Kates, M., Syz, J. Y., Gosser, D., and Haines, T. H. (1993) pH-dissociation characteristics of cardiolipin and its 2′-deoxy analogue, Lipids, 28, 877–882.PubMedGoogle Scholar
  108. 108.
    Haines, T. H. (1983) Anionic lipid head groups as a proton-conducting pathway along the surface of membranes: a hypothesis, Proc. Natl. Acad. Sci. USA, 80, 160–164.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Haines, T. H., and Dencher, N. A. (2002) Cardiolipin: a proton trap for oxidative phosphorylation, FEBS Lett., 528, 35–39.PubMedGoogle Scholar
  110. 110.
    Mulkidjanian, A. Y., Heberle, J., and Cherepanov, D. A. (2006) Protons @ interfaces: implications for biological energy conversion, Biochim. Biophys. Acta, 1757, 913–930.PubMedGoogle Scholar
  111. 111.
    Lange, C., Nett, J. H., Trumpower, B. L., and Hunte, C. (2001) Specific roles of protein-phospholipid interactions in the yeast cytochrome bc 1 complex structure, EMBO J., 20, 6591–6600.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Hielscher, R., Wenz, T., Hunte, C., and Hellwig, P. (2009) Monitoring the redox and protonation dependent contributions of cardiolipin in electrochemically induced FTIR difference spectra of the cytochrome bc 1 complex from yeast, Biochim. Biophys. Acta, 1787, 617–625.PubMedGoogle Scholar
  113. 113.
    Hielscher, R., Wenz, T., Stolpe, S., Hunte, C., Friedrich, T., and Hellwig, P. (2006) Monitoring redox-dependent contribution of lipids in Fourier transform infrared difference spectra of complex I from Escherichia coli, Biopolymers, 82, 291–294.PubMedGoogle Scholar
  114. 114.
    Arias-Cartin, R., Grimaldi, S., Arnoux, P., Guigliarelli, B., and Magalon, A. (2012) Cardiolipin binding in bacterial respiratory complexes: structural and functional implications, Biochim. Biophys. Acta, 1817, 1937–1949.PubMedGoogle Scholar
  115. 115.
    Huang, L. S., Cobessi, D., Tung, E. Y., and Berry, E. A. (2005) Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc 1 complex: a new crystal structure reveals an altered intramolecular hydrogenbonding pattern, J. Mol. Biol., 351, 573–597.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Dibrova, D. V., Cherepanov, D. A., Galperin, M. Y., Skulachev, V. P., and Mulkidjanian, A. Y. (2013) Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates, Biochim. Biophys. Acta, 1827, 1407–1427.PubMedGoogle Scholar
  117. 117.
    Hauss, T., Dante, S., Haines, T. H., and Dencher, N. A. (2005) Localization of coenzyme Q10 in the center of a deuterated lipid membrane by neutron diffraction, Biochim. Biophys. Acta, 1710, 57–62.PubMedGoogle Scholar
  118. 118.
    Lokhmatikov, A. V., Voskoboynikova, N. E., Cherepanov, D. A., Steinhoff, H. J., Skulachev, V. P., and Mulkidjanian, A. Y. (2012) Oxidation of cardiolipin in liposomes: a new insight into the primary steps of mitochondria-triggered apoptosis, Biochim. Biophys. Acta, 1817, S100.Google Scholar
  119. 119.
    Mileykovskaya, E., and Dowhan, W. (2000) Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange, J. Bacteriol., 182, 1172–1175.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Mileykovskaya, E., Dowhan, W., Birke, R. L., Zheng, D., Lutterodt, L., and Haines, T. H. (2001) Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces, FEBS Lett., 507, 187–190.PubMedGoogle Scholar
  121. 121.
    Pustovidko, A. V., Rokitskaya, T. I., Severina, I. I., Simonyan, R. A., Trendeleva, T. A., Lyamzaev, K. G., Antonenko, Y. N., Rogov, A. G., Zvyagilskaya, R. A., Skulachev, V. P., and Chernyak, B. V. (2013) Derivatives of the cationic plant alkaloids berberine and palmatine amplify protonophorous activity of fatty acids in model membranes and mitochondria, Mitochondrion, 13, 520–525.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. V. Lokhmatikov
    • 1
    • 2
  • N. E. Voskoboynikova
    • 1
  • D. A. Cherepanov
    • 3
  • N. V. Sumbatyan
    • 4
  • G. A. Korshunova
    • 5
  • M. V. Skulachev
    • 6
  • H. -J. Steinhoff
    • 1
  • V. P. Skulachev
    • 2
    • 5
  • A. Y. Mulkidjanian
    • 1
    • 2
    • 5
    Email author
  1. 1.School of PhysicsUniversity of OsnabruckOsnabruckGermany
  2. 2.School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  3. 3.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  4. 4.School of ChemistryLomonosov Moscow State UniversityMoscowRussia
  5. 5.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  6. 6.Institute of MitoengineeringLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations