Abstract
Here we present a concept that considers organism aging as an additional facultative function promoting evolution, but counterproductive for an individual. We hypothesize that aging can be inhibited or even arrested when full mobilization of all resources is needed for the survival of an individual. We believe that the organism makes such a decision based on the analysis of signals of special receptors that monitor a number of parameters of the internal and external environment. The amount of available food is one of these parameters. Food restriction is perceived by the organism as a signal of coming starvation; in response to it, the organism inhibits its counterproductive programs, in particular, aging. We hypothesize that the level of protein obtained with food is estimated based on blood concentration of one of the essential amino acids (methionine), of carbohydrates — via glucose level, and fats — based on the level of one of the free fatty acids. When the amount of available food is sufficient, these receptors transmit the signal allowing aging. In case of lack of food, this signal is cancelled, and as a result aging is inhibited, i.e. age-related weakening of physiological functions is inhibited, and lifespan increases (the well-known geroprotective effect of partial food restriction). In Caenorhabditis elegans, lowering of the ambient temperature has a similar effect. This geroprotective effect is removed by the knockout of one of the cold receptors, and replacement of the C. elegans receptor by a similar human receptor restores the ability of low temperature to increase the lifespan of the nematode. A chain of events linking the receptor with the aging mechanism has been discovered in mice — for one of the pain receptors in neurons, the nerve endings of which entwine pancreas β-cells. Age-related activation of these receptors inhibits the work of insulin genes in β-cells. Problems with insulin secretion lead to oxidative stress, chronic inflammation, and type II diabetes, which can be regarded as one of the forms of senile phenoptosis. In conclusion, we consider the role of some psychological factors in the regulation of the aging program.
Key words
phenoptosis aging aging program regulation food restriction diabetesAbbreviations
- mROS
mitochondrial reactive oxygen species
- ROS
reactive oxygen species
- SkQ
derivatives of plasto-quinone and penetrating cations (Sk+)
- SkQ1
plastoquinonyl decyltriphenylphosphonium
Preview
Unable to display preview. Download preview PDF.
References
- 1.Skulachev, V. P. (2003) Aging and the programmed death phenomena, in Topics in Current Genetics, Model Systems in Aging (Nystrom, T., and Osiewacz, H. D., eds.) Springer-Verlag, Berlin-Heidelberg, pp. 192–237.Google Scholar
- 2.Skulachev, V. P., Skulachev, M. V., and Feniuk, B. A. (2013) Life without Aging [in Russian], EKSMO, Moscow.Google Scholar
- 3.Skulachev, M. V., and Skulachev, V. P. (2014) New data on programmed aging — slow phenoptosis, Biochemistry (Moscow), 79, 977–993.Google Scholar
- 4.MacCay, C. M., and Crowell, M. F. (1934) Prolonging the life span, Sci. Mon., 39, 405–414.Google Scholar
- 5.Robertson, T. B., Marston, R., and Walters, J. W. (1934) Influence of intermittent starvation and of intermittent starvation plus nucleic acid on growth and longevity in white mice, Aust. J. Exp. Biol. Med. Sci., 12, 33.CrossRefGoogle Scholar
- 6.MacCay, C. M., Crowell, M. F., and Maynard, L. A. (1935) The effect of retarded growth upon the length of life span and upon the ultimate body size, J. Nutr., 10, 63–79.Google Scholar
- 7.MacCay, C. M., Maynard, L. A., and Barnes, L. L. (1943) Growth, aging, chronic disease and lifespan in rats, Arch. Biochem., 2, 469.Google Scholar
- 8.Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298–300.PubMedCrossRefGoogle Scholar
- 9.Will, L. C., and McCay, C. M. (1943) Ageing, basal metabolism and retarded growth, Arch. Biochem., 2, 481.Google Scholar
- 10.Mair, W., Goymer, P., Pletcher, S. D., and Partridge, L. (2003) Demography of dietary restriction and death in Drosophila, Science, 301, 1731–1733.PubMedCrossRefGoogle Scholar
- 11.Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Yu., Saprunova, V. V., Samoylova, T. A., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Yu., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 prolongs lifespan and prevents development of traits of senescence, Biochemistry (Moscow), 73, 1329–1342.CrossRefGoogle Scholar
- 12.Libert, S., and Pletcher, S. D. (2007) Modulation of longevity by environmental sensing, Cell, 131, 1231–1234.PubMedCrossRefGoogle Scholar
- 13.Libert, S., Zwiener, J., Chu, X., Vanvoorhies, W., Roman, G., and Pletcher, S. D. (2007) Regulation of Drosophila life span by olfaction and food-derived odors, Science, 315, 1133–1137.PubMedCrossRefGoogle Scholar
- 14.Stuchlikova, E., Juricova-Horakova, M., and Deyl, Z. (1975) New aspects of the dietary effect of life prolongation in rodents. What is the role of obesity in aging? Exp. Gerontol., 10, 141–144.PubMedCrossRefGoogle Scholar
- 15.Richie, J. P., Jr., Leutzinger, Y., Parthasarathy, S., Malloy, V., Orentreich, N., and Zimmerman, J. A. (1994) Methionine restriction increases blood glutathione and longevity in F344 rats, FASEB J., 8, 1302–1307.PubMedGoogle Scholar
- 16.Miller, R. A., Buehner, G., Chang, Y., Harper, J. M., Sigler, R., and Smith-Wheelock, M. (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance, Aging Cell, 4, 119–125.PubMedCrossRefGoogle Scholar
- 17.Sanz, A., Caro, P., Ayala, V., Portero-Otin, M., Pamplona, R., and Barja, G. (2006) Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins, FASEB J., 20, 1064–1073.PubMedCrossRefGoogle Scholar
- 18.Caro, P., Gomez, J., Sanchez, I., Garcia, R., Lopez-Torres, M., Naudi, A., Portero-Otin, M., Pamplona, R., and Barja, G. (2009) Effect of 40% restriction of dietary amino acids (except methionine) on mitochondrial oxidative stress and biogenesis, AIF and SIRT1 in rat liver, Biogerontology, 10, 579–592.PubMedCrossRefGoogle Scholar
- 19.Sanchez-Roman, I., Gomez, A., Perez, I., Sanchez, C., Suarez, H., Naudi, A., Jove, M., Lopez-Torres, M., Pamplona, R., and Barja, G. (2012) Effects of aging and methionine restriction applied at old age on ROS generation and oxidative damage in rat liver mitochondria, Biogerontology, 13, 399–411.PubMedCrossRefGoogle Scholar
- 20.Sanchez-Roman, I., Gomez, A., Gomez, J., Suarez, H., Sanchez, C., Naudi, A., Ayala, V., Portero-Otin, M., Lopez-Torres, M., Pamplona, R., and Barja, G. (2011) Forty percent methionine restriction lowers DNA methylation, complex I ROS generation, and oxidative damage to mtDNA and mitochondrial proteins in rat heart, J. Bioenerg. Biomembr., 43, 699–708.PubMedCrossRefGoogle Scholar
- 21.Edman, U., Garcia, A. M., Busuttil, R. A., Sorensen, D., Lundell, M., Kapahi, P., and Vijg, J. (2009) Lifespan extension by dietary restriction is not linked to protection against somatic DNA damage in Drosophila melanogaster, Aging Cell, 8, 331–338.PubMedCrossRefPubMedCentralGoogle Scholar
- 22.Skulachev, V. P. (2011) SkQ1 treatment and food restriction — two ways to retard an aging program of organisms, Aging (Albany), 3, 1045–1050.Google Scholar
- 23.Skulachev, V. P. (2012) What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689–706.CrossRefGoogle Scholar
- 24.Remolina, S. C., and Hughes, K. A. (2008) Evolution and mechanisms of long life and high fertility in queen honey bees, Age (Dordr.), 30, 177–185.CrossRefGoogle Scholar
- 25.Sun, D., Muthukumar, A. R., Lawrence, R. A., and Fernandes, G. (2001) Effects of calorie restriction on polymicrobial peritonitis induced by cecum ligation and puncture in young C57BL/6 mice, Clin. Diagn. Lab. Immunol., 8, 1003–1011.PubMedPubMedCentralGoogle Scholar
- 26.Garcia, A. M., Busuttil, R. A., Calder, R. B., Dolle, M. E., Diaz, V., McMahan, C. A., Bartke, A., Nelson, J., Reddick, R., and Vijg, J. (2008) Effect of Ames dwarfism and caloric restriction on spontaneous DNA mutation frequency in different mouse tissues, Mech. Ageing Dev., 129, 528–533.PubMedCrossRefPubMedCentralGoogle Scholar
- 27.Hamden, K., Carreau, S., Ayadi, F., Masmoudi, H., and El Feki, A. (2009) Inhibitory effect of estrogens, phytoestrogens, and caloric restriction on oxidative stress and hepatotoxicity in aged rats, Biomed. Environ. Sci., 22, 381–387.PubMedCrossRefGoogle Scholar
- 28.Park, S. K., Kim, K., Page, G. P., Allison, D. B., Weindruch, R., and Prolla, T. A. (2009) Gene expression profiling of aging in multiple mouse strains: identification of aging biomarkers and impact of dietary antioxidants, Aging Cell, 8, 484–495.PubMedCrossRefPubMedCentralGoogle Scholar
- 29.Eng, P. M., Rimm, E. B., Fitzmaurice, G., and Kawachi, I. (2002) Social ties and change in social ties in relation to subsequent total and cause-specific mortality and coronary heart disease incidence in men, Amer. J. Epidemiol., 155, 700–709.CrossRefGoogle Scholar
- 30.Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., Allison, D. B., Cruzen, C., Simmons, H. A., Kemnitz, J. W., and Weindruch, R. (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys, Science, 325, 201–204.PubMedCrossRefPubMedCentralGoogle Scholar
- 31.Colman, R. J., and Anderson, R. M. (2011) Nonhuman primate calorie restriction, Antioxid. Redox Signal., 14, 229–239.PubMedCrossRefPubMedCentralGoogle Scholar
- 32.Severina, I. I., Severin, F. F., Korshunova, G. A., Sumbatyan, N. V., Ilyasova, T. M., Simonyan, R. A., Rogov, A. G., Trendeleva, T. A., Zvyagilskaya, R. A., Dugina, V. B., Domnina, L. V., Fetisova, E. K., Lyamzaev, K. G., Vyssokikh, M. Y., Chernyak, B. V., Skulachev, M. V., Skulachev, V. P., and Sadovnichii, V. A. (2013) In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives, FEBS Lett., 587, 2018–2024.PubMedCrossRefGoogle Scholar
- 33.Gardner, E. M. (2005) Caloric restriction decreases survival of aged mice in response to primary influenza infection, J. Gerontol. A. Biol. Sci. Med. Sci., 60, 688–694.PubMedCrossRefGoogle Scholar
- 34.Obukhova, L. A., Skulachev, V. P., and Kolosova, N. G. (2009) Mitochondria-targeted antioxidant SkQ1 inhibits age-dependent involution of the thymus in normal and senescence-prone rats, Aging, 1, 389–401.PubMedPubMedCentralGoogle Scholar
- 35.Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.PubMedCrossRefGoogle Scholar
- 36.Demianenko, I. A., Vasilieva, T. V., Domnina, L. V., Dugina, V. B., Egorov, M. V., Ivanova, O. Y., Ilinskaya, O. P., Pletjushkina, O. Y., Popova, E. N., Sakharov, I. Y., Fedorov, A. V., and Chernyak, B. V. (2010) Novel mitochondria-targeted antioxidants, “Skulachev-ion” derivatives, accelerate dermal wound healing in animals, Biochemistry (Moscow), 75, 274–280.CrossRefGoogle Scholar
- 37.Obin, M., Halbleib, M., Lipman, R., Carroll, K., Taylor, A., and Bronson, R. (2000) Calorie restriction increases light-dependent photoreceptor cell loss in the neural retina of Fischer 344 rats, Neurobiol. Aging, 21, 639–645.PubMedCrossRefGoogle Scholar
- 38.Anisimov, V. N., Egorov, M. V., Krasilshchikova, M. S., Lyamzaev, K. G., Manskikh, V. N., Moshkin, M. P., Novikov, E. A., Popovich, I. G., Rogovin, K. A., Shabalina, I. G., Shekarova, O. N., Skulachev, M. V., Titova, T. V., Vygodin, V. A., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2011) Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents, Aging (Albany NY), 3, 1110–1119.Google Scholar
- 39.Hopkin, K. (2003) Dietary drawbacks, Sci. Aging. Knowl. Environ., 2003, No. 8, p. NS4.CrossRefGoogle Scholar
- 40.Redman, L. M., and Ravussin, E. (2011) Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes, Antiox. Redox Signal., 14, 275–287.CrossRefGoogle Scholar
- 41.Vallejo, E. A. (1957) Hunger diet on alternate days in the nutrition of the aged, Prensa Med. Argent., 44, 119–120.PubMedGoogle Scholar
- 42.Stunkard, A. J., and Rockstein, M. (1976) Nutrition, longevity and obesity, in Nutrition, Aging and Obesity (Rockstein, M., and Stunkard, A. J., eds.) Academic Press, N.Y., pp. 253–284.Google Scholar
- 43.Mitteldorf, J., and Sagan, D. (2014) Suicide Genes, MacMillan Press, in press.Google Scholar
- 44.Xiao, R., Zhang, B., Dong, Y. M., Gong, J. K., Xu, T., Liu, J. F., and Xu, X. Z. S. (2013) A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel, Cell, 152, 806–817.PubMedCrossRefPubMedCentralGoogle Scholar
- 45.Riera, C. E., Huising, M. O., Follett, P., Leblanc, M., Halloran, J., Van Andel, R., de Magalhaes Filho, C. D., Merkwirth, C., and Dillin, A. (2014) TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling, Cell, 157, 1023–1036.PubMedCrossRefGoogle Scholar
- 46.Melnyk, A., and Himms-Hagen, J. (1995) Resistance to aging-associated obesity in capsaicin-desensitized rats one year after treatment, Obes. Res., 3, 337–344.PubMedCrossRefGoogle Scholar
- 47.Westerterp-Plantenga, M. S., Smeets, A., and Lejeune, M. P. (2005) Sensory and gastrointestinal satiety effects of capsaicin on food intake, Int. J. Obes. (Lond.), 29, 682–688.CrossRefGoogle Scholar
- 48.Moreno, H., Burghardt, N. S., Vela-Duarte, D., Masciotti, J., Hua, F., Fenton, A. A., Schwaller, B., and Small, S. A. (2012) The absence of the calcium-buffering protein calbindin is associated with faster age-related decline in hippocampal metabolism, Hippocampus, 22, 1107–1120.PubMedCrossRefPubMedCentralGoogle Scholar
- 49.West, M. J. (1993) Regionally specific loss of neurons in the aging human hippocampus, Neurobiol. Aging, 14, 287–293.PubMedCrossRefGoogle Scholar
- 50.West, M. J., Coleman, P. D., Flood, D. G., and Troncoso, J. C. (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease, Lancet, 344, 769–772.PubMedCrossRefGoogle Scholar
- 51.Rains, J. L., and Jain, S. K. (2011) Oxidative stress, insulin signaling, and diabetes, Free Radic. Biol. Med., 50, 567–575.PubMedCrossRefPubMedCentralGoogle Scholar
- 52.Brownlee, M. (2001) Biochemistry and molecular cell biology of diabetic complications, Nature, 414, 813–820.PubMedCrossRefGoogle Scholar
- 53.Maitra, U., Chang, S., Singh, N., and Li, L. (2009) Molecular mechanism underlying the suppression of lipid oxidation during endotoxemia, Mol. Immunol., 47, 420–425.PubMedCrossRefPubMedCentralGoogle Scholar
- 54.Schaffler, A., and Scholmerich, J. (2010) Innate immunity and adipose tissue biology, Trends Immunol., 31, 228–235.PubMedCrossRefGoogle Scholar
- 55.Park, T. J., Comer, C., Carol, A., Lu, Y., Hong, H. S., and Rice, F. L. (2003) Somatosensory organization and behavior in naked mole-rats. II. Peripheral structures, innervation, and selective lack of neuropeptides associated with thermoregulation and pain, J. Comp. Neurol., 465, 104–120.PubMedCrossRefGoogle Scholar
- 56.Fredrickson, B. L., Grewen, K. M., Coffey, K. A., Algoe, S. B., Firestine, A. M., Arevalo, J. M., Ma, J., and Cole, S. W. (2013) A functional genomic perspective on human wellbeing, Proc. Natl. Acad. Sci. USA, 110, 13684–13689.PubMedCrossRefPubMedCentralGoogle Scholar
- 57.Franceschi, C., Bonafe, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., and De Benedictis, G. (2000) Inflamm-aging. An evolutionary perspective on immunosenescence, Ann. New York Acad. Sci., 908, 244–254.CrossRefGoogle Scholar
- 58.Zharinov, G., and Anisimov, V. (2014) Classical music instead of an anti-aging pill? Skripichnyi Kluch, 1, 33–36.Google Scholar
- 59.Anisimov, V. N., and Zharinov, G. M. (2013) Muses and longevity, Geront. Geriatr. Res., 2, 1000e1123.Google Scholar
- 60.Sharma, D. C. (2013) Impact analysis of sounds of nature (music therapy) on the hemato-biochemistry of Homo sapiens and Rattus norvegicus, in 2nd Int. Conf. Adv. Biol. Pharmac. Sci., Hong Kong, pp. 6–8.Google Scholar
- 61.Gangrade, A. (2012) The effect of music on the production of neurotransmitters, hormones, cytokines, and peptide: a review, Music and Medicine, 4, 40–43.CrossRefGoogle Scholar
- 62.Da Cruz, J. N., De Lima, D. D., Dal Magro, D. D., and Da Cruz, J. G. P. (2011) The power of classic music to reduce anxiety in rats treated with Simvastatin, Basic Clin. Neurosci., 2, 5–11.Google Scholar
- 63.Uchiyama, M., Jin, X. Y., Zhang, Q., Hirai, T., Amano, A., Bashuda, H., and Niimi, M. (2012) Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4(+)CD25(+) cells, J. Cardiothorac. Surg., 7, 1–8.CrossRefGoogle Scholar
- 64.Penninx, B. W., van Tilburg, T., Kriegsman, D. M., Deeg, D. J., Boeke, A. J., and van Eijk, J. T. (1997) Effects of social support and personal coping resources on mortality in older age: the longitudinal aging study Amsterdam, Am. J. Epidemiol., 146, 510–519.PubMedCrossRefGoogle Scholar
- 65.Eastwell, H. D. (1987) Voodoo death in Australian aborigines, Psychiatr. Med., 5, 71–73.PubMedGoogle Scholar