Biochemistry (Moscow)

, Volume 79, Issue 10, pp 977–993 | Cite as

New data on programmed aging — slow phenoptosis

Review

Abstract

This review summarizes the latest data on biochemistry and physiology of living organisms. These data suggest that aging, i.e. coordinated age-dependent weakening of many vital functions leading to gradual increase in the probability of dying, is not common to all organisms. Some species have been described whose probability of death does not depend on age or even decreases with age, this being accompanied by constant or increasing fertility. In the case of the naked mole rat (a non-aging mammal), a mechanism has been identified that protects this animal from cancer and the most common age-related diseases. The high molecular weight polysaccharide hyaluronan, a linear polymer composed of multiple repeated disaccharide of glucuronic acid and glucosamine, plays the key role in this mechanism. Hyaluronan is accumulated in the intercellular spaces in the organs and tissues of the naked mole rat. This polysaccharide provides early contact inhibition of cell division (anti-cancer effect). In addition, hyaluronan prevents the development of certain types of apoptosis, in particular, those induced by reactive oxygen species (ROS) (geroprotective effect preventing ROS-induced decrease in cellularity in the organs and tissues of aging organisms). Extraordinary longevity of the naked mole rat (over 30 years, which is long for a rodent the size of a mouse) is connected to its eusocial lifestyle, when only the “queen” and its few “husbands” breed, while the huge army of non-breeding “subordinates” provide the “royal family” with protection from predators, food, and construction and maintenance of an underground labyrinth size of a football field. This way of life removes the pressure of natural selection from the “family” and makes aging — the program that is counterproductive for the individual but increases “evolvability” of its offspring — unnecessary. The example of the naked mole rat demonstrates the optional character of the aging program for the organism. Many facts indicating that aging can be regulated by an organism provide another argument in favor of optionality of aging. Cases have been described when aging as a program useful for the evolution of offspring but counterproductive for the parental individual slows under conditions that threaten the very existence of the individual. These conditions include food restriction (the threat of death from starvation), heavy muscular work, decrease or increase in the environmental temperature, small amounts of poisons (including ROS; here we speak about the paradoxical geroprotective effect of the low doses of prooxidants that inhibit apoptosis). On the other hand, aging can be inhibited (and maybe even cancelled) artificially. This can be done by turning off the genes encoding the proteins participating in the aging program, such as FAT10, p66shc, and some others. In addition, the gene of the antioxidant enzyme catalase can be addressed into mitochondria, where it will split mitochondrial hydrogen peroxide, the level of which increases with age. However, today the simplest way to slow down the aging program is the use of mitochondria-targeted low molecular weight antioxidant compounds of plastoquinonyl decyltriphenylphosphonium-type (SkQ1), which prolong the life of animals, plants, and fungi and inhibit the development of many age-related diseases and symptoms.

Key words

phenoptosis aging program geroprotectors antioxidants mitochondria evolution 

Abbreviations

mROS

mitochondrial reactive oxygen species

ROS

reactive oxygen species

SkQ

derivatives of plastoquinone and penetrating cations (Sk+)

SkQ1

plastoquinonyl decyltriphenylphosphonium

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Williams, G. C. (1957) Pleiotropy, natural-selection, and the evolution of senescence, Evolution, 11, 398–411.Google Scholar
  2. 2.
    Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191–1195.Google Scholar
  3. 3.
    Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  4. 4.
    Skulachev, V. P. (2003) Aging and programmed death phenomena, in Topics in Current Genetics, Model Systems in Aging (Nystrom, T., and Osiewacz, H. D., eds.) Springer Verlag, Berlin-Heidelberg, pp. 192–237.Google Scholar
  5. 5.
    Skulachev, V. P., and Longo, V. D. (2005) Aging as a mitochondria-mediated atavistic program: can aging be switched off? Ann. N. Y. Acad. Sci., 1057, 145–164.PubMedGoogle Scholar
  6. 6.
    Skulachev, V. P. (2012) What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689–706.Google Scholar
  7. 7.
    Libertini, G. (2012) Classification of phenoptotic phenomena, Biochemistry (Moscow), 77, 707–715.Google Scholar
  8. 8.
    Skulachev, V. P., Skulachev, M. V., and Feniuk, B. A. (2013) Life without Aging [in Russian], EKSMO, Moscow.Google Scholar
  9. 9.
    Jones, O. R., Scheuerlein, A., Salguero-Gomez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlen, J., Garcia, M. B., Menges, E. S., Quintanascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169–173.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Tian, X., Azpurua, J., Hine, C., Vaidya, A., Myakishev-Rempel, M., Ablaeva, J., Mao, Z., Nevo, E., Gorbunova, V., and Seluanov, A. (2013) High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat, Nature, 499, 346–349.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Seluanov, A., Hine, C., Azpurua, J., Feigenson, M., Bozzella, M., Mao, Z., Catania, K. C., and Gorbunova, V. (2009) Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat, Proc. Natl. Acad. Sci. USA, 106, 19352–19357.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Pletjushkina, O. Y., Fetisova, E. K., Lyamzaev, K. G., Ivanova, O. Y., Domnina, L. V., Vyssokikh, M. Y., Pustovidko, A. V., Vasiliev, J. M., Murphy, M. P., Chernyak, B. V., and Skulachev, V. P. (2005) Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion, Cell Death Differ., 12, 1442–1444.PubMedGoogle Scholar
  13. 13.
    Pletjushkina, O. Yu., Fetisova, E. K., Lyamzaev, K. G., Ivanova, O. Yu, Domnina, L. V., Vyssokikh, M. Yu., Pustovidko, A. V., Alekseevski, A. V., Alekseevski, D. A., Vasiliev, J. M., Murphy, M. P., Chernyak, B. V., and Skulachev, V. P. (2006) Hydrogen peroxide produced inside mitochondria takes part in cell-to-cell transmission of apoptotic signal, Biochemistry (Moscow), 71, 60–67.Google Scholar
  14. 14.
    Lambert, A. J., Boysen, H. M., Buckingham, J. A., Yang, T., Podlutsky, A., Austad, S. N., Kunz, T. H., Buffenstein, R., and Brand, M. D. (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms, Aging Cell, 6, 607–618.PubMedGoogle Scholar
  15. 15.
    Azpurua, J., Ke, Z., Chen, I. X., Zhang, Q., Ermolenko, D. N., Zhang, Z. D., Gorbunova, V., and Seluanov, A. (2013) Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage, Proc. Natl. Acad. Sci. USA, 110, 17350–17355.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Brunet-Rossinni, A. K. (2004) Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals, Mech. Ageing Dev., 125, 11–20.PubMedGoogle Scholar
  17. 17.
    Brunet-Rossinni, A. K., and Austad, S. N. (2004) Ageing studies on bats: a review, Biogerontology, 5, 211–222.PubMedGoogle Scholar
  18. 18.
    Sohal, R. S., Ku, H. H., and Agarwal, S. (1993) Biochemical correlates of longevity in two closely related rodent species, Biochem. Biophys. Res. Commun., 196, 7–11.PubMedGoogle Scholar
  19. 19.
    Csiszar, A., Labinskyy, N., Zhao, X., Hu, F., Serpillon, S., Huang, Z., Ballabh, P., Levy, R. J., Hintze, T. H., Wolin, M. S., Austad, S. N., Podlutsky, A., and Ungvari, Z. (2007) Vascular superoxide and hydrogen peroxide production and oxidative stress resistance in two closely related rodent species with disparate longevity, Aging Cell, 6, 783–797.PubMedGoogle Scholar
  20. 20.
    Sohal, R. S., Ferguson, M., Sohal, B. H., and Forster, M. J. (2009) Life span extension in mice by food restriction depends on an energy imbalance, J. Nutr., 139, 533–539.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Shi, Y., Pulliam, D. A., Liu, Y., Hamilton, R. T., Jernigan, A. L., Bhattacharya, A., Sloane, L. B., Qi, W., Chaudhuri, A., Buffenstein, R., Ungvari, Z., Austad, S. N., and Van Remmen, H. (2013) Reduced mitochondrial ROS, enhanced antioxidant defense, and distinct age-related changes in oxidative damage in muscles of long-lived Peromyscus leucopus, Am. J. Physiol., 304, R343-355.Google Scholar
  22. 22.
    Csiszar, A., Labinskyy, N., Orosz, Z., Xiangmin, Z., Buffenstein, R., and Ungvari, Z. (2007) Vascular aging in the longest-living rodent, the naked mole rat, Am. J. Physiol. Heart Circ. Physiol., 293, H919–927.PubMedGoogle Scholar
  23. 23.
    Finch, C. E. (1990) Longevity, Senescence and the Genome, University Chicago Press, Chicago.Google Scholar
  24. 24.
    Finch, C. E. (2009) Update on slow aging and negligible senescence — a mini-review, Gerontology, 55, 307–313.PubMedGoogle Scholar
  25. 25.
    Delaney, M. A., Nagy, L., Kinsel, M. J., and Treuting, P. M. (2013) Spontaneous histological lesions of the adult naked mole rat (Heterocephalus glaber): a retrospective survey of lesions in a zoo population, Vet. Pathol., 50, 607–621.PubMedGoogle Scholar
  26. 26.
    Lecomte, V. J., Sorci, G., Cornet, S., Jaeger, A., Faivre, B., Arnoux, E., Gaillard, M., Trouve, C., Besson, D., Chastel, O., and Weimerskirch, H. (2010) Patterns of aging in the long-lived wandering albatross, Proc. Natl. Acad. Sci. USA, 14, 6370–6375.Google Scholar
  27. 27.
    Buffenstein, R. (2005) The naked mole-rat: a new long-living model for human aging research, J. Gerontol. A. Biol. Sci. Med. Sci., 60, 1369–1377.PubMedGoogle Scholar
  28. 28.
    Szilard, L. (1959) On the nature of the aging process, Proc. Natl. Acad. Sci. USA, 45, 30–45.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Ciechanover, A. (2012) Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting, Neuro-Degenerat. Dis., 10, 7–22.Google Scholar
  30. 30.
    Fredriksson, A., Johansson Krogh, E., Hernebring, M., Pettersson, E., Javadi, A., Almstedt, A., and Nystrom, T. (2012) Effects of aging and reproduction on protein quality control in soma and gametes of Drosophila melanogaster, Aging Cell, 11, 634–643.PubMedGoogle Scholar
  31. 31.
    Nystrom, T. (2005) Role of oxidative carbonylation in protein quality control and senescence, EMBO J., 24, 1311–1317.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Koga, H., Kaushik, S., and Cuervo, A. M. (2011) Protein homeostasis and aging: the importance of exquisite quality control, Ageing Res. Rev., 10, 205–215.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Friguet, B., Bulteau, A. L., Chondrogianni, N., Conconi, M., and Petropoulos, I. (2000) Protein degradation by the proteasome and its implications in aging, Ann. N. Y. Acad. Sci., 908, 143–154.PubMedGoogle Scholar
  34. 34.
    Shringarpure, R., and Davies, K. J. A. (2002) Protein turnover by the proteasome in aging and disease, Free Rad. Biol. Med., 32, 1084–1089.PubMedGoogle Scholar
  35. 35.
    Sitte, N., Merker, K., Von Zglinicki, T., Grune, T., and Davies, K. J. A. (2000) Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I — effects of proliferative senescence, FASEB J., 14, 2495–2502.PubMedGoogle Scholar
  36. 36.
    Jahngen, J. H., Lipman, R. D., Eisenhauer, D. A., Jahngen, E. G. E., and Taylor, A. (1990) Aging and cellular maturation cause changes in ubiquitin eye lens protein conjugates, Arch. Biochem. Biophys., 276, 32–37.PubMedGoogle Scholar
  37. 37.
    Ruotolo, R., Grassi, F., Percudani, R., Rivetti, C., Martorana, D., Maraini, G., and Ottonello, S. (2003) Gene expression profiling in human age-related nuclear cataract, Mol. Vision, 9, 538–548.Google Scholar
  38. 38.
    Hawse, J. R., Hejtmancik, J. F., Horwitz, J., and Kantorow, M. (2004) Identification and functional clustering of global gene expression differences between age-related cataract and clear human lenses and aged human lenses, Exp. Eye Res., 79, 935–940.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Tsirigotis, M., Zhang, M., Chiu, R. K., Wouters, B. G., and Gray, D. A. (2001) Sensitivity of mammalian cells expressing mutant ubiquitin to protein-damaging agents, J. Biol. Chem., 276, 46073–46078.PubMedGoogle Scholar
  40. 40.
    Engelberg-Kulka, H., Yelin, I., and Kolodkin-Gal, I. (2009) Activation of a built-in bacterial programmed cell death system as a novel mechanism of action of some antibiotics, Commun. Integr. Biol., 2, 211–212.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast, J. Cell Biol., 168, 257–269.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Skulachev, V. P. (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell, FEBS Lett., 397, 7–10.PubMedGoogle Scholar
  43. 43.
    Skulachev, V. P. (2002) Programmed death phenomena: from organelle to organism, Ann. N. Y. Acad. Sci., 959, 214–237.PubMedGoogle Scholar
  44. 44.
    Kashiwagi, A., Hanada, H., Yabuki, M., Kanno, T., Ishisaka, R., Sasaki, J., Inoue, M., and Utsumi, K. (1999) Thyroxin enhancement and the role of reactive oxygen species in tadpole tail apoptosis, Free Rad. Biol. Med., 26, 1001–1009.PubMedGoogle Scholar
  45. 45.
    Erjavec, N., and Nystrom, T. (2007) Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 104, 10877–10881.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Osiewacz, H. D. (2003) Aging and mitochondrial dysfunction in the filamentous fungus Podospora anserina, in Topics in Current Genetics (Nystrom, T., and Osiewacz, H. D., eds.) Springer Verlag, Berlin-Heidelberg, pp. 17–38.Google Scholar
  47. 47.
    Munne-Bosch, S., and Alegre, L. (2002) Plant aging increases oxidative stress in chloroplasts, Planta, 214, 608–615.PubMedGoogle Scholar
  48. 48.
    Cocheme, H. M., Quin, C., McQuaker, S. J., Cabreiro, F., Logan, A., Prime, T. A., Abakumova, I., Patel, J. V., Fearnley, I. M., James, A. M., Porteous, C. M., Smith, R. A., Saeed, S., Carre, J. E., Singer, M., Gems, D., Hartley, R. C., Partridge, L., and Murphy, M. P. (2011) Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix, Cell Metab., 13, 340–350.PubMedGoogle Scholar
  49. 49.
    Logan, A., Shabalina, I. G., Prime, T. A., Rogatti, S., Kalinovich, A. V., Hartley, R. C., Budd, R. C., Cannon, B., and Murphy, M. P. (2014) In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice, Aging Cell, doi: 10.1111/acel.12212.Google Scholar
  50. 50.
    Blagosklonny, M. V. (2008) Aging: ROS or TOR, Cell Cycle, 7, 3344–3354.PubMedGoogle Scholar
  51. 51.
    Kirkwood, T. B., and Kowald, A. (2012) The free-radical theory of ageing — older, wiser and still alive: modeling positional effects of the primary targets of ROS reveals new support, BioEssays, 34, 692–700.PubMedGoogle Scholar
  52. 52.
    Blagosklonny, M. V. (2013) Aging is not programmed genetic pseudo-program is a shadow of developmental growth, Cell Cycle, 12, 3736–3742.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Ahlfors, R., Lang, S., Overmyer, K., Jaspers, P., Brosche, M., Tauriainen, A., Kollist, H., Tuominen, H., Belles-Boix, E., Piippo, M., Inze, D., Palva, E. T., and Kangasjarvi, J. (2004) Arabidopsis radical-induced cell death1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses, Plant Cell, 16, 1925–1937.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Gladyshev, V. N. (2014) The free radical theory of aging is dead. Long live the damage theory! Antiox. Redox. Signal., 20, 727–731.Google Scholar
  55. 55.
    Love, N. R., Chen, Y., Ishibashi, S., Kritsiligkou, P., Lea, R., Koh, Y., Gallop, J. L., Dorey, K., and Amaya, E. (2012) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration, Nature Cell Biol., 15, 222–228.Google Scholar
  56. 56.
    Ku, H. H., Brunk, U. T., and Sohal, R. S. (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species, Free Rad. Biol. Med., 15, 621–627.PubMedGoogle Scholar
  57. 57.
    Barja, G. (1998) Mitochondrial free radical production and aging in mammals and birds, Ann. N. Y. Acad. Sci., 854, 224–238.PubMedGoogle Scholar
  58. 58.
    Barja, G., and Herrero, A. (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals, FASEB J., 14, 312–318.PubMedGoogle Scholar
  59. 59.
    Capel, F., Rimbert, V., Lioger, D., Diot, A., Rousset, P., Mirand, P. P., Boirie, Y., Morio, B., and Mosoni, L. (2005) Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved, Mech. Ageing Dev., 126, 505–511.PubMedGoogle Scholar
  60. 60.
    Qiu, X., Brown, K., Hirschey, M. D., Verdin, E., and Chen, D. (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation, Cell Metab., 12, 662–667.PubMedGoogle Scholar
  61. 61.
    Someya, S., Yu, W., Hallows, W. C., Xu, J., Vann, J. M., Leeuwenburgh, C., Tanokura, M., Denu, J. M., and Prolla, T. A. (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction, Cell, 143, 802–812.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Tao, R., Coleman, M. C., Pennington, J. D., Ozden, O., Park, S. H., Jiang, H., Kim, H. S., Flynn, C. R., Hill, S., Hayes McDonald, W., Olivier, A. K., Spitz, D. R., and Gius, D. (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress, Mol. Cell, 40, 893–904.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Brown, K., Xie, S., Qiu, X., Mohrin, M., Shin, J., Liu, Y., Zhang, D., Scadden, D. T., and Chen, D. (2013) SIRT3 reverses aging-associated degeneration, Cell Rep., 3, 319–327.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Schriner, S. E., Linford, N. J., Martin, G. M., Treuting, P., Ogburn, C. E., Emond, M., Coskun, P. E., Ladiges, W., Wolf, N., Van Remmen, H., Wallace, D. C., and Rabinovitch, P. S. (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria, Science, 308, 1909–1911.PubMedGoogle Scholar
  65. 65.
    Lee, H. Y., Choi, C. S., Birkenfeld, A. L., Alves, T. C., Jornayvaz, F. R., Jurczak, M. J., Zhang, D., Woo, D. K., Shadel, G. S., Ladiges, W., Rabinovitch, P. S., Santos, J. H., Petersen, K. F., Samuel, V. T., and Shulman, G. I. (2010) Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance, Cell Metab., 12, 668–674.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Dai, D. F., and Rabinovitch, P. S. (2009) Cardiac aging in mice and humans: the role of mitochondrial oxidative stress, Trends Cardiovasc. Med., 19, 213–220.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Treuting, P. M., Linford, N. J., Knoblaugh, S. E., Emond, M. J., Morton, J. F., Martin, G. M., Rabinovitch, P. S., and Ladiges, W. C. (2008) Reduction of age-associated pathology in old mice by overexpression of catalase in mitochondria, J. Gerontol. Biol., 63, 813–824.Google Scholar
  68. 68.
    Dai, D. F., Chen, T., Wanagat, J., Laflamme, M., Marcinek, D. J., Emond, M. J., Ngo, C. P., Prolla, T. A., and Rabinovitch, P. S. (2010) Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria, Aging Cell, 9, 536–544.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., Lanfrancone, L., and Pelicci, P. G. (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals, Nature, 402, 309–313.PubMedGoogle Scholar
  70. 70.
    Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura, A., Migliaccio, E., Milia, E., Padura, I. M., Raker, V. A., Maccarana, M., Petronilli, V., Minucci, S., Bernardi, P., Lanfrancone, L., and Pelicci, P. G. (2002) A p53-p66Shc signaling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis, Oncogene, 21, 3872–3878.PubMedGoogle Scholar
  71. 71.
    Napoli, C., Martin-Padura, I., de Nigris, F., Giorgio, M., Mansueto, G., Somma, P., Condorelli, M., Sica, G., De Rosa, G., and Pelicci, P. (2003) Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet, Proc. Natl. Acad. Sci. USA, 100, 2112–2116.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Giorgio, M., Migliaccio, E., and Paolucci, D. (2004) p66shc Is a Signal Transduction Redox Enzyme, 13th EBEC Meet. Abstr., 27.Google Scholar
  73. 73.
    Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Yu., Saprunova, V. V., Samoylova, T. A., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Yu., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 prolongs lifespan and prevents development of traits of senescence, Biochemistry (Moscow), 73, 1329–1342.Google Scholar
  74. 74.
    Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.PubMedGoogle Scholar
  75. 75.
    Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Jr., Zorov, D. B., and Skulachev, V. P. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies, Curr. Drug Targets, 12, 800–826.PubMedGoogle Scholar
  76. 76.
    Anisimov, V. N., Egorov, M. V., Krasilshchikova, M. S., Lyamzaev, K. G., Manskikh, V. N., Moshkin, M. P., Novikov, E. A., Popovich, I. G., Rogovin, K. A., Shabalina, I. G., Shekarova, O. N., Skulachev, M. V., Titova, T. V., Vygodin, V. A., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2011) Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents, Aging (Albany NY), 3, 1110–1119.Google Scholar
  77. 77.
    Skulachev, V. P. (2013) Cationic antioxidants as a powerful tool against mitochondrial oxidative stress, Biochem. Biophys. Res. Commun., 441, 275–279.PubMedGoogle Scholar
  78. 78.
    Petrosillo, G., Matera, M., Casanova, G., Ruggiero, F. M., and Paradies, G. (2008) Mitochondrial dysfunction in rat brain with aging. Involvement of complex I, reactive oxygen species and cardiolipin, Neurochem. Int., 53, 126–131.PubMedGoogle Scholar
  79. 79.
    Paradies, G., Petrosillo, G., Paradies, V., and Ruggiero, F. M. (2010) Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging, Free Rad. Biol. Med., 48, 1286–1295.PubMedGoogle Scholar
  80. 80.
    Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs), Biochim. Biophys. Acta, 1797, 878–889.PubMedGoogle Scholar
  81. 81.
    Kagan, V. E., Borisenko, G. G., Tyurina, Y. Y., Tyurin, V. A., Jiang, J. F., Potapovich, A. I., Kini, V., Amoscato, A. A., and Fujii, Y. (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine, Free Rad. Biol. Med., 37, 1963–1985.PubMedGoogle Scholar
  82. 82.
    Kagan, V. E., Tyurin, V. A., Jiang, J. F., Tyurina, Y. Y., Ritov, V. B., Amoscato, A. A., Osipov, A. N., Belikova, N. A., Kapralov, A. A., Kini, V., Vlasova, I. I., Zhao, Q., Zou, M. M., Di, P., Svistunenko, D. A., Kurnikov, I. V., and Borisenko, G. G. (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors, Nature Chem. Biol., 1, 223–232.Google Scholar
  83. 83.
    Pamplona, R., Portero-Otin, M., Riba, D., Ruiz, C., Prat, J., Bellmunt, M. J., and Barja, G. (1998) Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals, J. Lipid Res., 39, 1989–1994.PubMedGoogle Scholar
  84. 84.
    Barja, G. (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts, Antioxid. Redox. Signal., 19, 1420–1445.PubMedGoogle Scholar
  85. 85.
    Remolina, S. C., and Hughes, K. A. (2008) Evolution and mechanisms of long life and high fertility in queen honey bees, Age (Dordr.), 30, 177–185.Google Scholar
  86. 86.
    Haddad, L. S., Kelbert, L., and Hulbert, A. J. (2007) Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes, Exp. Gerontol., 42, 601–609.PubMedGoogle Scholar
  87. 87.
    Corona, M., Hughes, K. A., Weaver, D. B., and Robinson, G. E. (2005) Gene expression patterns associated with queen honeybee longevity, Mech. Ageing Dev., 126, 1230–1238.PubMedGoogle Scholar
  88. 88.
    Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J. (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes, J. Exp. Med., 192, 1001–1014.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Melzer, S., Lens, F., Gennen, J., Vanneste, S., Rohde, A., and Beeckman, T. (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana, Nat. Genet., 40, 1489–1492.PubMedGoogle Scholar
  90. 90.
    Lens, F., Smets, E., and Melzer, S. (2012) Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness, New Phytol., 193, 12–17.PubMedGoogle Scholar
  91. 91.
    Wodinsky, J. (1977) Hormonal inhibition of feeding and death in octopus: control by optic gland secretion, Science, 198, 948–951.PubMedGoogle Scholar
  92. 92.
    Bradley, A. J., McDonald, I. R., and Lee, A. K. (1980) Stress and mortality in a small marsupial (Antechinus stuartii Macleay), Gen. Comp. Endocrinol., 40, 188–200.PubMedGoogle Scholar
  93. 93.
    Mitteldorf, J., and Sagan, D. (2014) Suicide Genes, MacMillan Press, in press.Google Scholar
  94. 94.
    Skulachev, V. P. (2005) Ageing as atavistic program which can be cancelled, Vestnik RAN, 75, 831–843.Google Scholar
  95. 95.
    Austad, S. N. (1997) Why We Age? John Willey & Sons, New York.Google Scholar
  96. 96.
    Maldonado, T. A., Jones, R. E., and Norris, D. O. (2000) Distribution of beta-amyloid and amyloid precursor protein in the brain of spawning (senescent) salmon: a natural, brain-aging model, Brain Res., 858, 237–251.PubMedGoogle Scholar
  97. 97.
    Maldonado, T. A., Jones, R. E., and Norris, D. O. (2002) Intraneuronal amyloid precursor protein (APP) and appearance of extracellular beta-amyloid peptide (abeta) in the brain of aging kokanee salmon, J. Neurobiol., 53, 11–20.PubMedGoogle Scholar
  98. 98.
    Maldonado, T. A., Jones, R. E., and Norris, D. O. (2002) Timing of neurodegeneration and beta-amyloid (Abeta) peptide deposition in the brain of aging kokanee salmon, J. Neurobiol., 53, 21–35.PubMedGoogle Scholar
  99. 99.
    Bredenkamp, N., Nowell, C. S., and Blackburn, C. C. (2014) Regeneration of the aged thymus by a single transcription factor, Development, 141, 1627–1637.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Canaan, A., DeFuria, J., Perelman, E., Schultz, V., Seay, M., Tuck, D., Flavell, R. A., Snyder, M. P., Obin, M. S., and Weissman, S. M. (2014) Extended lifespan and reduced adiposity in mice lacking the FAT10 gene, Proc. Natl. Acad. Sci. USA, 111, 5313–5318.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Ren, J., Wang, Y., Gao, Y., Mehta, S. B., and Lee, C. G. (2011) FAT10 mediates the effect of TNF-alpha in inducing chromosomal instability, J. Cell Sci., 124, 3665–3675.PubMedGoogle Scholar
  102. 102.
    Merbl, Y., Refour, P., Patel, H., Springer, M., and Kirschner, M. W. (2013) Profiling of ubiquitin-like modifications reveals features of mitotic control, Cell, 152, 1160–1172.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Gao, Y., Theng, S. S., Zhuo, J., Teo, W. B., Ren, J., and Lee, C. G. (2014) FAT10, an ubiquitin-like protein, confers malignant properties in non-tumorigenic and tumorigenic cells, Carcinogenesis, 35, 923–934.PubMedGoogle Scholar
  104. 104.
    Liu, Y. C., Pan, J., Zhang, C., Fan, W., Collinge, M., Bender, J. R., and Weissman, S. M. (1999) A MHC-encoded ubiquitin-like protein (FAT10) binds noncovalently to the spindle assembly checkpoint protein MAD2, Proc. Natl. Acad. Sci. USA, 96, 4313–4318.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Hipp, M. S. (2005) NUB1L and FAT10, two ubiquitin-like proteins involved in protein degradation: Thesis, Universitaet Konstanz.Google Scholar
  106. 106.
    Maryanovich, M., and Gross, A. (2013) A ROS rheostat for cell fate regulation, Trends Cell. Biol., 23, 129–134.PubMedGoogle Scholar
  107. 107.
    Sommer, S. S. (1994) Does cancer kill the individual and save the species? Human Mutation, 3, 166–169.PubMedGoogle Scholar
  108. 108.
    Manskikh, V. N. (2004) Essays on Evolutionary Oncology [in Russian], SibGMU, Tomsk.Google Scholar
  109. 109.
    Manskikh, V. N. (2008) Hypothesis: phagocytosis of aberrant cells protects long-loved vertebrate species from tumors, Uspekhi Gerontol., 21, 27–33.Google Scholar
  110. 110.
    Lichtenstein, A. V. (2005) Cancer as a programmed death of an organism, Biochemistry (Moscow), 70, 1055–1064.Google Scholar
  111. 111.
    Weismann, A. (1989) Essays upon Heredity and Kindred Biological Problems, Calderon Press, Oxford.Google Scholar
  112. 112.
    Yu, T., Wang, X., Purring-Koch, C., Wei, Y., and McLendon, G. L. (2001) A mutational epitope for cytochrome c binding to the apoptosis protease activation factor-1, J. Biol. Chem., 20, 13034–13038.Google Scholar
  113. 113.
    Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2013) Principles of Bioenergetics, Springer Verlag, Berlin-Heidelberg.Google Scholar
  114. 114.
    Sharonov, G. V., Feofanov, A. V., Bocharova, O. V., Astapova, M. V., Dedukhova, V. I., Chernyak, B. V., Dolgikh, D. A., Arseniev, A. S., Skulachev, V. P., and Kirpichnikov, M. P. (2005) Comparative analysis of proapoptotic activity of cytochrome c mutants in living cells, Apoptosis, 10, 797–808.PubMedGoogle Scholar
  115. 115.
    Mufazalov, I. A., Penkov, D. N., Chernyak, B. V., Pletyushkina, O. Yu., Vyssokikh, M. Yu., Chertkova, R. V., Kirpichnikov, M. P., Dolgikh, D. A., Kruglov, A. A., Kuprash, D. V., Skulachev, V. P., and Nedospasov, S. A. (2009) Preparation and characterization of mouse embryonic fibroblasts with K72W mutation in somatic cytochrome c gene, Mol. Biol., 43, 596–603.Google Scholar
  116. 116.
    Zermati, Y., Mouhamad, S., Stergiou, L., Besse, B., Galluzzi, L., Boehrer, S., Pauleau, A. L., Rosselli, F., D’Amelio, M., Amendola, R., Castedo, M., Hengartner, M., Soria, J. C., Cecconi, F., and Kroemer, G. (2007) Nonapoptotic role for Apaf-1 in the DNA damage checkpoint, Mol. Cell, 28, 624–637.PubMedGoogle Scholar
  117. 117.
    Murray, T. V., McMahon, J. M., Howley, B. A., Stanley, A., Ritter, T., Mohr, A., Zwacka, R., and Fearnhead, H. O. (2008) A non-apoptotic role for caspase-9 in muscle differentiation, J. Cell Sci., 121, 3786–3793.PubMedGoogle Scholar
  118. 118.
    Khalil, H., Peltzer, N., Walicki, J., Yang, J. Y., Dubuis, G., Gardiol, N., Held, W., Bigliardi, P., Marsland, B., Liaudet, L., and Widmann, C. (2012) Caspase-3 protects stressed organs against cell death, Mol. Cell Biol., 32, 4523–4533.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Le Page-Degivry, M. T., Bidard, J. N., Rouvier, E., Bulard, C., and Lazdunski, M. (1986) Presence of abscisic acid, a phytohormone, in the mammalian brain, Proc. Natl. Acad. Sci. USA, 83, 1155–1158.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Bruzzone, S., Basile, G., Mannino, E., Sturla, L., Magnone, M., Grozio, A., Salis, A., Fresia, C., Vigliarolo, T., Guida, L., De Flora, A., Tossi, V., Cassia, R., Lamattina, L., and Zocchi, E. (2012) Autocrine abscisic acid mediates the UV-B-induced inflammatory response in human granulocytes and keratinocytes, J. Cell. Physiol., 227, 2502–2510.PubMedGoogle Scholar
  121. 121.
    Wolfe, K. H., Sharp, P. M., and Li, W. H. (1989) Mutation rates differ among regions of the mammalian genome, Nature, 337, 283–285.PubMedGoogle Scholar
  122. 122.
    Sniegowski, P. D., Gerrish, P. J., and Lenski, R. E. (1997) Evolution of high mutation rates in experimental populations of E. coli, Nature, 387, 703–705.PubMedGoogle Scholar
  123. 123.
    Hempenstall, S., Picchio, L., Mitchell, S. E., Speakman, J. R., and Selman, C. (2010) The impact of acute caloric restriction on the metabolic phenotype in male C57BL/6 and DBA/2 mice, Mech. Ageing Dev., 131, 111–118.PubMedGoogle Scholar
  124. 124.
    Sun, H., Skogerbo, G., Wang, Z., Liu, W., and Li, Y. X. (2008) Structural relationships between highly conserved elements and genes in vertebrate genomes, PLoS One, 3, e3727.Google Scholar
  125. 125.
    Wright, B. E. (2004) Stress-directed adaptive mutations and evolution, Mol. Microbiol., 52, 643–650.PubMedGoogle Scholar
  126. 126.
    Yee, C., Yang, W., and Hekimi, S. (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans, Cell, 157, 897–909.PubMedGoogle Scholar
  127. 127.
    Hill, S. M., Hao, X., Liu, B., and Nystrom, T. (2014) Lifespan extension by a metacaspase in the yeast Saccharomyces cerevisiae, Science, doi: 10.1126/sci-ence.1252634.Google Scholar
  128. 128.
    Skulachev, V. P. (2011) SkQ1 treatment and food restriction — two ways to retard an aging program of organisms, Aging (Albany), 3, 1045–1050.Google Scholar
  129. 129.
    Heywood, R., Sortwell, R. J., Noel, P. R. B., Street, A. E., Prentice, D. E., Roe, F. J. C., Wadsworth, P. F., Worden, A. N., and Vanabbe, N. J. (1979) Safety evaluation of toothpaste containing chloroform. 3. Long-term study in beagle dogs, J. Environ. Pathol. Tox., 2, 835–851.Google Scholar
  130. 130.
    Palmer, A. K., Street, A. E., Roe, F. J. C., Worden, A. N., and Vanabbe, N. J. (1979) Safety evaluation of toothpaste containing chloroform. 2. Long-term studies in rats, J. Environ. Pathol. Tox., 2, 821–833.Google Scholar
  131. 131.
    Schulz, T. J., Zarse, K., Voigt, A., Urban, N., Birringer, M., and Ristow, M. (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress, Cell Metab., 6, 280–293.PubMedGoogle Scholar
  132. 132.
    Ristow, M., and Schmeisser, K. (2014) Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS), Dose Response, 12, 288–341.PubMedPubMedCentralGoogle Scholar
  133. 133.
    De Haes, W., Frooninckx, L., Van Assche, R., Smolders, A., Depuydt, G., Billen, J., Braeckman, B. P., Schoofs, L., and Temmerman, L. (2014) Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2, Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1321776111.Google Scholar
  134. 134.
    Xiao, R., Zhang, B., Dong, Y. M., Gong, J. K., Xu, T., Liu, J. F., and Xu, X. Z. S. (2013) A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel, Cell, 152, 806–817.PubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Biological FacultyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of MitoengineeringLomonosov Moscow State UniversityMoscowRussia
  3. 3.Belozersky Institute of Physico-Chemical Biology and Department of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations