Biochemistry (Moscow)

, Volume 79, Issue 9, pp 928–946 | Cite as

Use of intracellular transport processes for targeted drug delivery into a specified cellular compartment

  • A. A. Rosenkranz
  • A. V. Ulasov
  • T. A. Slastnikova
  • Y. V. Khramtsov
  • A. S. SobolevEmail author


Targeted drug delivery into the cell compartment that is the most vulnerable to effects of the corresponding drug is a challenging problem, and its successful solution can significantly increase the efficiency and reduce side effects of the delivered therapeutic agents. To accomplish this one can utilize natural mechanisms of cellular specific uptake of macromolecules by receptor-mediated endocytosis and intracellular transport between cellular compartments. A transporting construction combining the components responsible for different steps of intracellular transport is promising for creating multifunctional modular constructions capable of delivering the necessary therapeutic agent into a given compartment of type-specified cells. This review focuses on intracellular transport peculiarities along with approaches for designing such transporting constructions for new, more effective, and safer strategies for treatment of various diseases.

Key words

targeted drug delivery intracellular transport receptor-mediated endocytosis transport of macromolecules nuclear import modular nanotransporters cancer therapy 



cell penetration peptides


hemoglobin-like protein of E. coli


modular nanotransporters


nuclear export signal


nuclear localization signal








reactive oxygen species


trans-activator of transcription


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D’Souza, G. G., and Weissig, V. (2009) Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet, Expert. Opin. Drug Deliv., 6, 1135–1148.PubMedGoogle Scholar
  2. 2.
    Rajendran, L., Knolker, H. J., and Simons, K. (2010) Subcellular targeting strategies for drug design and delivery, Nat. Rev. Drug Discov., 9, 29–42.PubMedGoogle Scholar
  3. 3.
    Bareford, L. M., and Swaan, P. W. (2007) Endocytic mechanisms for targeted drug delivery, Adv. Drug Deliv. Rev., 59, 748–758.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Sobolev, A. S. (2009) Novel modular transporters delivering anticancer drugs and foreign DNA to the nuclei of target cancer cells, J. BUON, 14,Suppl. 1, S33–S42.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen, J., Sawyer, N., and Regan, L. (2013) Protein-protein interactions: general trends in the relationship between binding affinity and interfacial buried surface area, Protein Sci., 22, 510–515.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Lo Conte, L., Chothia, C., and Janin, J. (1999) The atomic structure of protein-protein recognition sites, J. Mol. Biol., 285, 2177–2198.PubMedGoogle Scholar
  7. 7.
    Sobolev, A. S. (2013) Modular nanocarriers as a multipurposed platform for delivery of anticancer drugs, Vestn. Ros. Akad. Nauk, 83, 685–697.Google Scholar
  8. 8.
    Raper, S. E., Haskal, Z. J., Ye, X., Pugh, C., Furth, E. E., Gao, G. P., and Wilson, J. M. (1998) Selective gene transfer into the liver of non-human primates with E1-deleted, E2A-defective, or E1-E4 deleted recombinant adenoviruses, Hum. Gene Ther., 9, 671–679.PubMedGoogle Scholar
  9. 9.
    Howe, S. J., Mansour, M. R., Schwarzwaelder, K., Bartholomae, C., Hubank, M., Kempski, H., Brugman, M. H., Pike-Overzet, K., Chatters, S. J., de Ridder, D., Gilmour, K. C., Adams, S., Thornhill, S. I., Parsley, K. L., Staal, F. J., Gale, R. E., Linch, D. C., Bayford, J., Brown, L., Quaye, M., Kinnon, C., Ancliff, P., Webb, D. K., Schmidt, M., von Kalle, C., Gaspar, H. B., and Thrasher, A. J. (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients, J. Clin. Invest., 118, 3143–3150.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Manno, C. S., Pierce, G. F., Arruda, V. R., Glader, B., Ragni, M., Rasko, J. J., Ozelo, M. C., Hoots, K., Blatt, P., Konkle, B., Dake, M., Kaye, R., Razavi, M., Zajko, A., Zehnder, J., Rustagi, P. K., Nakai, H., Chew, A., Leonard, D., Wright, J. F., Lessard, R. R., Sommer, J. M., Tigges, M., Sabatino, D., Luk, A., Jiang, H., Mingozzi, F., Couto, L., Ertl, H. C., High, K. A., and Kay, M. A. (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response, Nat. Med., 12, 342–347.PubMedGoogle Scholar
  11. 11.
    Ogris, M. (2006) Nucleic acid based therapeutics for tumor therapy, Anticancer Agents Med. Chem., 6, 563–570.PubMedGoogle Scholar
  12. 12.
    Sobolev, A. S., Rosenkranz, A. A., and Gilyazova, D. G. (2004) Approaches for targeted intracellular delivery of photosensitizers for increasing their efficiency and lending cell specificity, Biofizika, 49, 351–379.PubMedGoogle Scholar
  13. 13.
    Gilyazova, D. G., Rosenkranz, A. A., Gulak, P. V., Lunin, V. G., Sergienko, O. V., Khramtsov, Y. V., Timofeyev, K. N., Grin, M. A., Mironov, A. F., Rubin, A. B., Georgiev, G. P., and Sobolev, A. S. (2006) Targeting cancer cells by novel engineered modular transporters, Cancer Res., 66, 10534–10540.PubMedGoogle Scholar
  14. 14.
    Roessler, K., and Eich, G. (1989) Nuclear recoils from 211-At decay, Radiochim. Acta, 47, 87–89.Google Scholar
  15. 15.
    Boswell, C. A., and Brechbiel, M. W. (2005) Auger electrons: lethal, low energy, and coming soon to a tumor cell nucleus near you, J. Nucl. Med., 46, 1946–1947.PubMedGoogle Scholar
  16. 16.
    Buchegger, F., Perillo-Adamer, F., Dupertuis, Y. M., and Delaloye, A. B. (2006) Auger radiation targeted into DNA: a therapy perspective, Eur. J. Nucl. Med. Mol. Imaging, 33, 1352–1363.PubMedGoogle Scholar
  17. 17.
    Hoyer, J., and Neundorf, I. (2012) Peptide vectors for the nonviral delivery of nucleic acids, Acc. Chem. Res., 45, 1048–1056.PubMedGoogle Scholar
  18. 18.
    Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B. T., Sali, A., and Rout, M. P. (2007) The molecular architecture of the nuclear pore complex, Nature, 450, 695–701.PubMedGoogle Scholar
  19. 19.
    Becker, T., Bottinger, L., and Pfanner, N. (2012) Mitochondrial protein import: from transport pathways to an integrated network, Trends Biochem. Sci., 37, 85–91.PubMedGoogle Scholar
  20. 20.
    Allen, T. M., and Cullis, P. R. (2013) Liposomal drug delivery systems: from concept to clinical applications, Adv. Drug Deliv. Rev., 65, 36–48.PubMedGoogle Scholar
  21. 21.
    Byrne, J. D., Betancourt, T., and Brannon-Peppas, L. (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics, Adv. Drug Deliv. Rev., 60, 1615–1626.PubMedGoogle Scholar
  22. 22.
    Muro, S. (2012) Challenges in design and characterization of ligand-targeted drug delivery systems, J. Control Release, 164, 125–137.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Tros de Ilarduya, C., and Duzgunes, N. (2013) Delivery of therapeutic nucleic acids via transferrin and transferrin receptors: lipoplexes and other carriers, Expert Opin. Drug Deliv., 10, 1583–1591.PubMedGoogle Scholar
  24. 24.
    Golla, K., Bhaskar, C., Ahmed, F., and Kondapi, A. K. (2013) A target-specific oral formulation of doxorubicin-protein nanoparticles: efficacy and safety in hepatocellular cancer, J. Cancer, 4, 644–652.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Hong, M., Zhu, S., Jiang, Y., Tang, G., Sun, C., Fang, C., Shi, B., and Pei, Y. (2010) Novel anti-tumor strategy: PEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles, J. Control Release, 141, 22–29.PubMedGoogle Scholar
  26. 26.
    Suzuki, R., Takizawa, T., Kuwata, Y., Mutoh, M., Ishiguro, N., Utoguchi, N., Shinohara, A., Eriguchi, M., Yanagie, H., and Maruyama, K. (2008) Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome, Int. J. Pharm., 346, 143–150.PubMedGoogle Scholar
  27. 27.
    Wang, Y., Zhou, J., Qiu, L., Wang, X., Chen, L., Liu, T., and Di, W. (2014) Cisplatin-alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells, Biomaterials, 35, 4297–4309.PubMedGoogle Scholar
  28. 28.
    Razumienko, E., Dryden, L., Scollard, D., and Reilly, R. M. (2013) MicroSPECT/CT imaging of co-expressed HER2 and EGFR on subcutaneous human tumor xenografts in athymic mice using 111In-labeled bispecific radioimmunoconjugates, Breast Cancer Res. Treat., 138, 709–718.PubMedGoogle Scholar
  29. 29.
    Slastnikova, T. A., Rosenkranz, A. A., Gulak, P. V., Schiffelers, R. M., Lupanova, T. N., Khramtsov, Y. V., Zalutsky, M. R., and Sobolev, A. S. (2012) Modular nanotransporters: a multipurpose in vivo working platform for targeted drug delivery, Int. J. Nanomed., 7, 467–482.Google Scholar
  30. 30.
    Slastnikova, T. A., Koumarianou, E., Rosenkranz, A. A., Vaidyanathan, G., Lupanova, T. N., Sobolev, A. S., and Zalutsky, M. R. (2012) Modular nanotransporters: a versatile approach for enhancing nuclear delivery and cytotoxicity of Auger electron-emitting 125I, EJNMMI Res., 2, 59.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Rosenkranz, A. A., Vaidyanathan, G., Pozzi, O. R., Lunin, V. G., Zalutsky, M. R., and Sobolev, A. S. (2008) Engineered modular recombinant transporters: application of new platform for targeted radiotherapeutic agents to alpha-particle emitting 211At, Int. J. Radiat. Oncol. Biol. Phys., 72, 193–200.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Watanabe, K., Kaneko, M., and Maitani, Y. (2012) Functional coating of liposomes using a folate-polymer conjugate to target folate receptors, Int. J. Nanomed., 7, 3679–3688.Google Scholar
  33. 33.
    Stevens, P. J., Sekido, M., and Lee, R. J. (2004) A folate receptor-targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug, Pharm. Res., 21, 2153–2157.PubMedGoogle Scholar
  34. 34.
    Naumann, R. W., Coleman, R. L., Burger, R. A., Sausville, E. A., Kutarska, E., Ghamande, S. A., Gabrail, N. Y., DePasquale, S. E., Nowara, E., and Gilbert, L. (2013) Precedent: a randomized phase II trial comparing vintafolide (EC145) and pegylated liposomal doxorubicin (PLD) in combination versus PLD alone in patients with platinum-resistant ovarian cancer, J. Clin. Oncol., 31, 4400–4406.PubMedGoogle Scholar
  35. 35.
    Dong, D. W., Xiang, B., Gao, W., Yang, Z. Z., Li, J. Q., and Qi, X. R. (2013) pH-responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells, Biomaterials, 34, 4849–4859.PubMedGoogle Scholar
  36. 36.
    Liu, D., Liu, F., Liu, Z., Wang, L., and Zhang, N. (2011) Tumor specific delivery and therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody, Mol. Pharmaceutics, 8, 2291–2301.Google Scholar
  37. 37.
    Rosenkranz, A. A., Lunin, V. G., Gulak, P. V., Sergienko, O. V., Shumiantseva, M. A., Voronina, O. L., Gilyazova, D. G., John, A. P., Kofner, A. A., Mironov, A. F., Jans, D. A., and Sobolev, A. S. (2003) Recombinant modular transporters for cell-specific nuclear delivery of locally acting drugs enhance photosensitizer activity, FASEB J., 17, 1121–1123.PubMedGoogle Scholar
  38. 38.
    Durymanov, M. O., Beletkaia, E. A., Ulasov, A. V., Khramtsov, Y. V., Trusov, G. A., Rodichenko, N. S., Slastnikova, T. A., Vinogradova, T. V., Uspenskaya, N. Y., Kopantsev, E. P., Rosenkranz, A. A., Sverdlov, E. D., and Sobolev, A. S. (2012) Subcellular trafficking and transfection efficacy of polyethylenimine-polyethylene glycol polyplex nanoparticles with a ligand to melanocortin receptor-1, J. Control Release, 163, 211–219.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Nayak, T. K., Atcher, R. W., Prossnitz, E. R., and Norenberg, J. P. (2008) Somatostatin-receptor-targeted alpha-emitting 213Bi is therapeutically more effective than beta(−)-emitting 177Lu in human pancreatic adenocarcinoma cells, Nuclear Med. Biol., 35, 673–678.Google Scholar
  40. 40.
    Shen, H., Hu, D., Du, J., Wang, X., Liu, Y., Wang, Y., Wei, J. M., Ma, D., Wang, P., and Li, L. (2008) Paclitaxel-octreotide conjugates in tumor growth inhibition of A549 human non-small cell lung cancer xenografted into nude mice, Eur. J. Pharmacol., 601, 23–29.PubMedGoogle Scholar
  41. 41.
    Dai, W., Jin, W., Zhang, J., Wang, X., Wang, J., Zhang, X., Wan, Y., and Zhang, Q. (2012) Spatiotemporally controlled co-delivery of anti-vasculature agent and cytotoxic drug by octreotide-modified stealth liposomes, Pharmac. Res., 29, 2902–2911.Google Scholar
  42. 42.
    Su, Z., Shi, Y., Xiao, Y., Sun, M., Ping, Q., Zong, L., Li, S., Niu, J., Huang, A., and You, W. (2013) Effect of octreotide surface density on receptor-mediated endocytosis in vitro and anticancer efficacy of modified nanocarrier in vivo after optimization, Int. J. Pharmaceutics, 447, 281–292.Google Scholar
  43. 43.
    Iwase, Y., and Maitani, Y. (2012) Dual functional octreotide GAP modified liposomal irinotecan leads to high therapeutic efficacy for medullary thyroid carcinoma xenografts, Cancer Sci., 103, 310–316.PubMedGoogle Scholar
  44. 44.
    Amin, M., Badiee, A., and Jaafari, M. R. (2013) Improvement of pharmacokinetic and antitumor activity of PEGylated liposomal doxorubicin by targeting with Nmethylated cyclic RGD peptide in mice bearing C-26 colon carcinomas, Int. J. Pharmaceutics, 458, 324–333.Google Scholar
  45. 45.
    Schiffelers, R. M., Ansari, A., Xu, J., Zhou, Q., Tang, Q., Storm, G., Molema, G., Lu, P. Y., Scaria, P. V., and Woodle, M. C. (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle, Nucleic Acids Res., 32, e149–e149.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Hemminki, A., Belousova, N., Zinn, K. R., Liu, B., Wang, M., Chaudhuri, T. R., Rogers, B. E., Buchsbaum, D. J., Siegal, G. P., and Barnes, M. N. (2001) An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression, Mol. Ther., 4, 223–231.PubMedGoogle Scholar
  47. 47.
    Biswas, S., and Torchilin, V. P. (2014) Nanopreparations for organelle-specific delivery in cancer, Adv. Drug Deliv. Rev., 66, 26–41.PubMedGoogle Scholar
  48. 48.
    Torchilin, V. P. (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting, Annu. Rev. Biomed. Eng., 8, 343–375.PubMedGoogle Scholar
  49. 49.
    Koshkaryev, A., Thekkedath, R., Pagano, C., Meerovich, I., and Torchilin, V. P. (2011) Targeting of lysosomes by liposomes modified with octadecyl-rhodamine B, J. Drug Target, 19, 606–614.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Kurz, T., Terman, A., Gustafsson, B., and Brunk, U. T. (2008) Lysosomes and oxidative stress in aging and apoptosis, Biochim. Biophys. Acta, 1780, 1291–1303.PubMedGoogle Scholar
  51. 51.
    Koshkaryev, A., Piroyan, A., and Torchilin, V. P. (2012) Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes, Cancer Biol. Ther., 13, 50–60.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Vaidyanathan, G., Affleck, D. J., Li, J., Welsh, P., and Zalutsky, M. R. (2001) A polar substituent-containing acylation agent for the radioiodination of internalizing monoclonal antibodies: N-succinimidyl 4-guanidinomethyl-3-[131I]iodobenzoate ([131I]SGMIB), Bioconj. Chem., 12, 428–438.Google Scholar
  53. 53.
    Olzmann, J. A., Kopito, R. R., and Christianson, J. C. (2013) The mammalian endoplasmic reticulum-associated degradation system, Cold Spring Harb. Perspect. Biol., 5, a013185.PubMedGoogle Scholar
  54. 54.
    Mukhopadhyay, S., and Linstedt, A. D. (2013) Retrograde trafficking of AB(5) toxins: mechanisms to therapeutics, J. Mol. Med. (Berl.), 91, 1131–1141.Google Scholar
  55. 55.
    Wesche, J., Rapak, A., and Olsnes, S. (1999) Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol, J. Biol. Chem., 274, 34443–34449.PubMedGoogle Scholar
  56. 56.
    Mukhopadhyay, S., and Linstedt, A. D. (2012) Manganese blocks intracellular trafficking of Shiga toxin and protects against Shiga toxicosis, Science, 335, 332–335.PubMedGoogle Scholar
  57. 57.
    Johannes, L., and Romer, W. (2010) Shiga toxins — from cell biology to biomedical applications, Nat. Rev. Microbiol., 8, 105–116.PubMedGoogle Scholar
  58. 58.
    El, A. A., Schmidt, F., Amessou, M., Sarr, M., Decaudin, D., Florent, J. C., and Johannes, L. (2007) Shiga toxinmediated retrograde delivery of a topoisomerase I inhibitor prodrug, Angew. Chem. Int. Ed. Engl., 46, 6469–6472.Google Scholar
  59. 59.
    El, A. A., Schmidt, F., Sarr, M., Decaudin, D., Florent, J. C., and Johannes, L. (2008) Synthesis and properties of a mitochondrial peripheral benzodiazepine receptor conjugate, Chem. Med. Chem., 3, 1687–1695.Google Scholar
  60. 60.
    Amessou, M., Carrez, D., Patin, D., Sarr, M., Grierson, D. S., Croisy, A., Tedesco, A. C., Maillard, P., and Johannes, L. (2008) Retrograde delivery of photosensitizer (TPPp-Obeta-GluOH)3 selectively potentiates its photodynamic activity, Bioconjug. Chem., 19, 532–538.PubMedGoogle Scholar
  61. 61.
    Tarrago-Trani, M. T., Jiang, S., Harich, K. C., and Storrie, B. (2006) Shiga-like toxin subunit B (SLTB)-enhanced delivery of chlorin e 6 (Ce6) improves cell killing, Photochem. Photobiol., 82, 527–537.PubMedGoogle Scholar
  62. 62.
    Vingert, B., Adotevi, O., Patin, D., Jung, S., Shrikant, P., Freyburger, L., Eppolito, C., Sapoznikov, A., Amessou, M., Quintin-Colonna, F., Fridman, W. H., Johannes, L., and Tartour, E. (2006) The Shiga toxin B-subunit targets antigen in vivo to dendritic cells and elicits anti-tumor immunity, Eur. J. Immunol., 36, 1124–1135.PubMedGoogle Scholar
  63. 63.
    Adotevi, O., Vingert, B., Freyburger, L., Shrikant, P., Lone, Y. C., Quintin-Colonna, F., Haicheur, N., Amessou, M., Herbelin, A., Langlade-Demoyen, P., Fridman, W. H., Lemonnier, F., Johannes, L., and Tartour, E. (2007) B subunit of Shiga toxin-based vaccines synergize with alphagalactosylceramide to break tolerance against self antigen and elicit antiviral immunity, J. Immunol., 179, 3371–3379.PubMedGoogle Scholar
  64. 64.
    Beatty, M. S., and Curiel, D. T. (2012) Chapter two — adenovirus strategies for tissue-specific targeting, Adv. Cancer Res., 115, 39–67.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Boisvert, M., and Tijssen, P. (2012) Endocytosis of nonenveloped DNA viruses, in Molecular Regulation of Endocytosis, Chap. 17 (Ceresa, B., ed.) InTech; 10.5772/45821.Google Scholar
  66. 66.
    Meier, O., and Greber, U. F. (2004) Adenovirus endocytosis, J. Gene Med., 6,Suppl. 1, S152–S163.PubMedGoogle Scholar
  67. 67.
    FitzGerald, D. J., Padmanabhan, R., Pastan, I., and Willingham, M. C. (1983) Adenovirus-induced release of epidermal growth factor and pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis, Cell, 32, 607–617.PubMedGoogle Scholar
  68. 68.
    Michael, S. I., and Curiel, D. T. (1994) Strategies to achieve targeted gene delivery via the receptor-mediated endocytosis pathway, Gene Ther., 1, 223–232.PubMedGoogle Scholar
  69. 69.
    Ladokhin, A. S. (2013) pH-Triggered conformational switching along the membrane insertion pathway of the diphtheria toxin T-domain, Toxins (Basel), 5, 1362–1380.Google Scholar
  70. 70.
    Kurnikov, I. V., Kyrychenko, A., Flores-Canales, J. C., Rodnin, M. V., Simakov, N., Vargas-Uribe, M., Posokhov, Y. O., Kurnikova, M., and Ladokhin, A. S. (2013) pH-Triggered conformational switching of the diphtheria toxin T-domain: the roles of N-terminal histidines, J. Mol. Biol., 425, 2752–2764.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Senzel, L., Gordon, M., Blaustein, R. O., Oh, K. J., Collier, R. J., and Finkelstein, A. (2000) Topography of diphtheria toxin’s T domain in the open channel state, J. Gen. Physiol., 115, 421–434.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Huynh, P. D., Cui, C., Zhan, H., Oh, K. J., Collier, R. J., and Finkelstein, A. (1997) Probing the structure of the diphtheria toxin channel. Reactivity in planar lipid bilayer membranes of cysteine-substituted mutant channels with methanethiosulfonate derivatives, J. Gen. Physiol., 110, 229–242.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Vargas-Uribe, M., Rodnin, M. V., Kienker, P., Finkelstein, A., and Ladokhin, A. S. (2013) Crucial role of H322 in folding of the diphtheria toxin T-domain into the openchannel state, Biochemistry, 52, 3457–3463.PubMedGoogle Scholar
  74. 74.
    Murphy, J. R. (2011) Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process, Toxins (Basel), 3, 294–308.Google Scholar
  75. 75.
    Sharpe, J. C., and London, E. (1999) Diphtheria toxin forms pores of different sizes depending on its concentration in membranes: probable relationship to oligomerization, J. Membr. Biol., 171, 209–221.PubMedGoogle Scholar
  76. 76.
    Kent, M. S., Yim, H., Murton, J. K., Satija, S., Majewski, J., and Kuzmenko, I. (2008) Oligomerization of membrane-bound diphtheria toxin (CRM197) facilitates a transition to the open form and deep insertion, Biophys. J., 94, 2115–2127.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Gilyazova, D. G., Rosenkranz, A. A., Gulak, P. V., Lunin, V. G., Sergienko, O. V., Khramtsov, Y. V., Timofeyev, K. N., Grin, M. A., Mironov, A. F., Rubin, A. B., Georgiev, G. P., and Sobolev, A. S. (2006) Targeting cancer cells by novel engineered modular transporters, Cancer Res., 66, 10534–10540.PubMedGoogle Scholar
  78. 78.
    Khramtsov, Y. V., Rokitskaya, T. I., Rosenkranz, A. A., Trusov, G. A., Gnuchev, N. V., Antonenko, Y. N., and Sobolev, A. S. (2008) Modular drug transporters with diphtheria toxin translocation domain form edged holes in lipid membranes, J. Control Release, 128, 241–247.PubMedGoogle Scholar
  79. 79.
    Rosenkranz, A. A., Khramtsov, Y. V., Trusov, G. A., Gnuchev, N. V., and Sobolev, A. S. (2008) Studies on the pore formation in lipid layers by modular transporters containing the translocational domain of the diphtheria toxin, Dokl. Ros. Akad. Nauk, 421, 385–387.Google Scholar
  80. 80.
    Sobolev, A. S. (2008) Modular transporters for subcellular cell-specific targeting of anti-tumor drugs, Bioessays, 30, 278–287.PubMedGoogle Scholar
  81. 81.
    Erazo-Oliveras, A., Muthukrishnan, N., Baker, R., Wang, T. Y., and Pellois, J. P. (2012) Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges, Pharmaceuticals (Basel), 5, 1177–1209.Google Scholar
  82. 82.
    Green, M., and Loewenstein, P. M. (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein, Cell, 55, 1179–1188.PubMedGoogle Scholar
  83. 83.
    Madani, F., Abdo, R., Lindberg, S., Hirose, H., Futaki, S., Langel, U., and Graslund, A. (2013) Modeling the endosomal escape of cell-penetrating peptides using a transmembrane pH gradient, Biochim. Biophys. Acta, 1828, 1198–1204.PubMedGoogle Scholar
  84. 84.
    Cahill, K. (2009) Molecular electroporation and the transduction of oligoarginines, Phys. Biol., 7, 16001.PubMedGoogle Scholar
  85. 85.
    Angeles-Boza, A. M., Erazo-Oliveras, A., Lee, Y. J., and Pellois, J. P. (2010) Generation of endosomolytic reagents by branching of cell-penetrating peptides: tools for the delivery of bioactive compounds to live cells in cis or trans, Bioconjug. Chem., 21, 2164–2167.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Yessine, M. A., and Leroux, J. C. (2004) Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules, Adv. Drug Deliv. Rev., 56, 999–1021.PubMedGoogle Scholar
  87. 87.
    Li, W., Nicol, F., and Szoka, F. C., Jr. (2004) GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery, Adv. Drug Deliv. Rev., 56, 967–985.PubMedGoogle Scholar
  88. 88.
    Wharton, S. A., Martin, S. R., Ruigrok, R. W., Skehel, J. J., and Wiley, D. C. (1988) Membrane fusion by peptide analogues of influenza virus haemagglutinin, J. Gen. Virol., 69, 1847–1857.PubMedGoogle Scholar
  89. 89.
    Michiue, H., Tomizawa, K., Wei, F. Y., Matsushita, M., Lu, Y. F., Ichikawa, T., Tamiya, T., Date, I., and Matsui, H. (2005) The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction, J. Biol. Chem., 280, 8285–8289.PubMedGoogle Scholar
  90. 90.
    Berg, K., Selbo, P. K., Prasmickaite, L., Tjelle, T. E., Sandvig, K., Moan, J., Gaudernack, G., Fodstad, O., Kjolsrud, S., Anholt, H., Rodal, G. H., Rodal, S. K., and Hogset, A. (1999) Photochemical internalization: a novel technology for delivery of macromolecules into cytosol, Cancer Res., 59, 1180–1183.PubMedGoogle Scholar
  91. 91.
    Berg, K., Weyergang, A., Prasmickaite, L., Bonsted, A., Hogset, A., Strand, M. T., Wagner, E., and Selbo, P. K. (2010) Photochemical internalization (PCI): a technology for drug delivery, Methods Mol. Biol., 635, 133–145.PubMedGoogle Scholar
  92. 92.
    Boussif, O., Lezoualch, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J. P. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine, Proc. Natl. Acad. Sci. USA, 92, 7297–7301.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Sonawane, N. D., Szoka, F. C., Jr., and Verkman, A. S. (2003) Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes, J. Biol. Chem., 278, 44826–44831.PubMedGoogle Scholar
  94. 94.
    Benjaminsen, R. V., Mattebjerg, M. A., Henriksen, J. R., Moghimi, S. M., and Andresen, T. L. (2013) The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH, Mol. Ther., 21, 149–157.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Forrest, M. L., Meister, G. E., Koerber, J. T., and Pack, D. W. (2004) Partial acetylation of polyethylenimine enhances in vitro gene delivery, Pharm. Res., 21, 365–371.PubMedGoogle Scholar
  96. 96.
    Funhoff, A. M., van Nostrum, C. F., Koning, G. A., Schuurmans-Nieuwenbroek, N. M., Crommelin, D. J., and Hennink, W. E. (2004) Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH, Biomacromolecules, 5, 32–39.PubMedGoogle Scholar
  97. 97.
    Gabrielson, N. P., and Pack, D. W. (2006) Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions, Biomacromolecules, 7, 2427–2435.PubMedGoogle Scholar
  98. 98.
    Richardson, S. C., Pattrick, N. G., Lavignac, N., Ferruti, P., and Duncan, R. (2010) Intracellular fate of bioresponsive poly(amidoamine)s in vitro and in vivo, J. Control Release, 142, 78–88.PubMedGoogle Scholar
  99. 99.
    Zhang, Z. Y., and Smith, B. D. (2000) High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model, Bioconjug. Chem., 11, 805–814.PubMedGoogle Scholar
  100. 100.
    Klemm, A. R., Young, D., and Lloyd, J. B. (1998) Effects of polyethyleneimine on endocytosis and lysosome stability, Biochem. Pharmacol., 56, 41–46.PubMedGoogle Scholar
  101. 101.
    Helmuth, J. A., Burckhardt, C. J., Greber, U. F., and Sbalzarini, I. F. (2009) Shape reconstruction of subcellular structures from live cell fluorescence microscopy images, J. Struct. Biol., 167, 1–10.PubMedGoogle Scholar
  102. 102.
    Kakimoto, S., Hamada, T., Komatsu, Y., Takagi, M., Tanabe, T., Azuma, H., Shinkai, S., and Nagasaki, T. (2009) The conjugation of diphtheria toxin T domain to poly (ethylenimine) based vectors for enhanced endosomal escape during gene transfection, Biomaterials, 30, 402–408.PubMedGoogle Scholar
  103. 103.
    Kakimoto, S., Tanabe, T., Azuma, H., and Nagasaki, T. (2010) Enhanced internalization and endosomal escape of dual-functionalized poly(ethyleneimine)s polyplex with diphtheria toxin T and R domains, Biomed. Pharmacother., 64, 296–301.PubMedGoogle Scholar
  104. 104.
    Xu, Y., and Szoka, F. C., Jr. (1996) Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection, Biochemistry, 35, 5616–5623.PubMedGoogle Scholar
  105. 105.
    Zuhorn, I. S., Bakowsky, U., Polushkin, E., Visser, W. H., Stuart, M. C., Engberts, J. B., and Hoekstra, D. (2005) Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency, Mol. Ther., 11, 801–810.PubMedGoogle Scholar
  106. 106.
    Sobolev, A. S. (2009) Modular nanotransporters of anticancer drugs attaching them cellular specificity and increased efficiency, Usp. Biol. Khim., 49, 389–404.Google Scholar
  107. 107.
    Akhlynina, T. V., Jans, D. A., Rosenkranz, A. A., Statsyuk, N. V., Balashova, I. Y., Toth, G., Pavo, I., Rubin, A. B., and Sobolev, A. S. (1997) Nuclear targeting of chlorin e6 enhances its photosensitizing activity, J. Biol. Chem., 272, 20328–20331.PubMedGoogle Scholar
  108. 108.
    Liang, H., Shin, D. S., Lee, Y. E., Nguyen, D. C., Kasravi, S., Aurasteh, P., and Berns, M. W. (2000) Subcellular phototoxicity of photofrin-II and lutetium texaphyrin in cells in vitro, Lasers Med. Sci., 15, 109–122.Google Scholar
  109. 109.
    Liang, H., Do, T., Kasravi, S., Aurasteh, P., Nguyen, A., Huang, A., Wang, Z., and Berns, M. W. (2000) Chromosomes are target sites for photodynamic therapy as demonstrated by subcellular laser microirradiation, J. Photochem. Photobiol. B, 54, 175–184.PubMedGoogle Scholar
  110. 110.
    Ling, D., Bae, B. C., Park, W., and Na, K. (2012) Photodynamic efficacy of photosensitizers under an attenuated light dose via lipid nanocarrier-mediated nuclear targeting, Biomaterials, 33, 5478–5486.PubMedGoogle Scholar
  111. 111.
    Vaidyanathan, G., and Zalutsky, M. R. (2011) Applications of 211At and 223Ra in targeted alpha-particle radiotherapy, Curr. Radiopharm., 4, 283–294.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Jackson, M. R., Falzone, N., and Vallis, K. A. (2013) Advances in anticancer radiopharmaceuticals, Clin. Oncol. (R. Coll. Radiol.), 25, 604–609.Google Scholar
  113. 113.
    Sui, M., Liu, W., and Shen, Y. (2011) Nuclear drug delivery for cancer chemotherapy, J. Control Release, 155, 227–236.PubMedGoogle Scholar
  114. 114.
    Jang, H., Ryoo, S. R., Kostarelos, K., Han, S. W., and Min, D. H. (2013) The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores, Biomaterials, 34, 3503–3510.PubMedGoogle Scholar
  115. 115.
    Luby-Phelps, K. (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area, Int. Rev. Cytol., 192, 189–221.PubMedGoogle Scholar
  116. 116.
    Luby-Phelps, K. (2013) The physical chemistry of cytoplasm and its influence on cell function: an update, Mol. Biol. Cell, 24, 2593–2596.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Campbell, E. M., and Hope, T. J. (2003) Role of the cytoskeleton in nuclear import, Adv. Drug Deliv. Rev., 55, 761–771.PubMedGoogle Scholar
  118. 118.
    Glover, D. J. (2012) Artificial viruses: exploiting viral trafficking for therapeutics, Infect. Disord. Drug Targets, 12, 68–80.PubMedGoogle Scholar
  119. 119.
    Rogers, S. L., and Gelfand, V. I. (2000) Membrane trafficking, organelle transport, and the cytoskeleton, Curr. Opin. Cell Biol., 12, 57–62.PubMedGoogle Scholar
  120. 120.
    Lakadamyali, M. (2014) Navigating the cell: how motors overcome roadblocks and traffic jams to efficiently transport cargo, Phys. Chem. Chem. Phys., 16, 5907–5916.PubMedGoogle Scholar
  121. 121.
    Luscher, B., and Eisenman, R. N. (1992) Mitosis-specific phosphorylation of the nuclear oncoproteins Myc and Myb, J. Cell Biol., 118, 775–784.PubMedGoogle Scholar
  122. 122.
    Dong, C., Li, Z., Alvarez, R., Jr., Feng, X. H., and Goldschmidt-Clermont, P. J. (2000) Microtubule binding to Smads may regulate TGF beta activity, Mol. Cell, 5, 27–34.PubMedGoogle Scholar
  123. 123.
    Giannakakou, P., Sackett, D. L., Ward, Y., Webster, K. R., Blagosklonny, M. V., and Fojo, T. (2000) p53 is associated with cellular microtubules and is transported to the nucleus by dynein, Nat. Cell Biol., 2, 709–717.PubMedGoogle Scholar
  124. 124.
    Lam, M. H., Thomas, R. J., Loveland, K. L., Schilders, S., Gu, M., Martin, T. J., Gillespie, M. T., and Jans, D. A. (2002) Nuclear transport of parathyroid hormone (PTH)-related protein is dependent on microtubules, Mol. Endocrinol., 16, 390–401.PubMedGoogle Scholar
  125. 125.
    Lopez-Perez, M., and Salazar, E. P. (2006) A role for the cytoskeleton in STAT5 activation in MCF7 human breast cancer cells stimulated with EGF, Int. J. Biochem. Cell Biol., 38, 1716–1728.PubMedGoogle Scholar
  126. 126.
    Roth, D. M., Moseley, G. W., Pouton, C. W., and Jans, D. A. (2011) Mechanism of microtubule-facilitated “fast track” nuclear import, J. Biol. Chem., 286, 14335–14351.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Roth, D. M., Moseley, G. W., Glover, D., Pouton, C. W., and Jans, D. A. (2007) A microtubule-facilitated nuclear import pathway for cancer regulatory proteins, Traffic, 8, 673–686.PubMedGoogle Scholar
  128. 128.
    Favaro, M. T., de Toledo, M. A., Alves, R. F., Santos, C. A., Beloti, L. L., Janissen, R., de la Torre, L. G., Souza, A. P., and Azzoni, A. R. (2014) Development of a non-viral gene delivery vector based on the dynein light chain Rp3 and the TAT peptide, J. Biotechnol., 173, 10–18.PubMedGoogle Scholar
  129. 129.
    Moseley, G. W., Leyton, D. L., Glover, D. J., Filmer, R. P., and Jans, D. A. (2010) Enhancement of protein transduction-mediated nuclear delivery by interaction with dynein/microtubules, J. Biotechnol., 145, 222–225.PubMedGoogle Scholar
  130. 130.
    Stewart, M. (2007) Molecular mechanism of the nuclear protein import cycle, Nat. Rev. Mol. Cell Biol., 8, 195–208.PubMedGoogle Scholar
  131. 131.
    Chook, Y. M., and Suel, K. E. (2011) Nuclear import by karyopherin-betas: recognition and inhibition, Biochim. Biophys. Acta, 1813, 1593–1606.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Xu, D., Farmer, A., and Chook, Y. M. (2010) Recognition of nuclear targeting signals by karyopherin-beta proteins, Curr. Opin. Struct. Biol., 20, 782–790.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Poon, I. K., Oro, C., Dias, M. M., Zhang, J. P., and Jans, D. A. (2005) A tumor cell-specific nuclear targeting signal within chicken anemia virus VP3/apoptin, J. Virol., 79, 1339–1341.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Marfori, M., Mynott, A., Ellis, J. J., Mehdi, A. M., Saunders, N. F., Curmi, P. M., Forwood, J. K., Boden, M., and Kobe, B. (2011) Molecular basis for specificity of nuclear import and prediction of nuclear localization, Biochim. Biophys. Acta, 1813, 1562–1577.PubMedGoogle Scholar
  135. 135.
    Lin, J. R., and Hu, J. (2013) SeqNLS: nuclear localization signal prediction based on frequent pattern mining and linear motif scoring, PLoS One, 8, e76864.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Lott, K., and Cingolani, G. (2011) The importin beta binding domain as a master regulator of nucleocytoplasmic transport, Biochim. Biophys. Acta, 1813, 1578–1592.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Kosugi, S., Hasebe, M., Matsumura, N., Takashima, H., Miyamoto-Sato, E., Tomita, M., and Yanagawa, H. (2009) Six classes of nuclear localization signals specific to different binding grooves of importin alpha, J. Biol. Chem., 284, 478–485.PubMedGoogle Scholar
  138. 138.
    Flores, K., and Seger, R. (2013) Stimulated nuclear import by beta-like importins, F1000Prime. Rep., 5, 41.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Kosugi, S., Hasebe, M., Tomita, M., and Yanagawa, H. (2009) Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs, Proc. Natl. Acad. Sci. USA, 106, 10171–10176.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Nguyen Ba, A. N., Pogoutse, A., Provart, N., and Moses, A. M. (2009) NLStradamus: a simple hidden Markov model for nuclear localization signal prediction, BMC Bioinformatics, 10, 202.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Kuusisto, H. V., Wagstaff, K. M., Alvisi, G., Roth, D. M., and Jans, D. A. (2012) Global enhancement of nuclear localization-dependent nuclear transport in transformed cells, FASEB J., 26, 1181–1193.PubMedGoogle Scholar
  142. 142.
    Turner, J. G., Dawson, J., and Sullivan, D. M. (2012) Nuclear export of proteins and drug resistance in cancer, Biochem. Pharmacol., 83, 1021–1032.PubMedGoogle Scholar
  143. 143.
    Fast, J., Mossberg, A. K., Nilsson, H., Svanborg, C., Akke, M., and Linse, S. (2005) Compact oleic acid in HAMLET, FEBS Lett., 579, 6095–6100.PubMedGoogle Scholar
  144. 144.
    Gustafsson, L., Hallgren, O., Mossberg, A. K., Pettersson, J., Fischer, W., Aronsson, A., and Svanborg, C. (2005) HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy, J. Nutr., 135, 1299–1303.PubMedGoogle Scholar
  145. 145.
    Hallgren, O., Aits, S., Brest, P., Gustafsson, L., Mossberg, A. K., Wullt, B., and Svanborg, C. (2008) Apoptosis and tumor cell death in response to HAMLET (human alphalactalbumin made lethal to tumor cells), Adv. Exp. Med. Biol., 606, 217–240.PubMedGoogle Scholar
  146. 146.
    Maddika, S., Mendoza, F. J., Hauff, K., Zamzow, C. R., Paranjothy, T., and Los, M. (2006) Cancer-selective therapy of the future: apoptin and its mechanism of action, Cancer Biol. Ther., 5, 10–19.PubMedGoogle Scholar
  147. 147.
    Kuusisto, H. V., Wagstaff, K. M., Alvisi, G., and Jans, D. A. (2008) The C-terminus of apoptin represents a unique tumor cell-enhanced nuclear targeting module, Int. J. Cancer, 123, 2965–2969.PubMedGoogle Scholar
  148. 148.
    Los, M., Panigrahi, S., Rashedi, I., Mandal, S., Stetefeld, J., Essmann, F., and Schulze-Osthoff, K. (2009) Apoptin, a tumor-selective killer, Biochim. Biophys. Acta, 1793, 1335–1342.PubMedGoogle Scholar
  149. 149.
    Ho, C. S. J., Rydstrom, A., Trulsson, M., Balfors, J., Storm, P., Puthia, M., Nadeem, A., and Svanborg, C. (2012) HAMLET: functional properties and therapeutic potential, Future Oncol., 8, 1301–1313.Google Scholar
  150. 150.
    Backendorf, C., Visser, A. E., de Boer, A. G., Zimmerman, R., Visser, M., Voskamp, P., Zhang, Y. H., and Noteborn, M. (2008) Apoptin: therapeutic potential of an early sensor of carcinogenic transformation, Annu. Rev. Pharmacol. Toxicol., 48, 143–169.PubMedGoogle Scholar
  151. 151.
    Heilman, D. W., Teodoro, J. G., and Green, M. R. (2006) Apoptin nucleocytoplasmic shuttling is required for cell type-specific localization, apoptosis, and recruitment of the anaphase-promoting complex/cyclosome to PML bodies, J. Virol., 80, 7535–7545.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Kucharski, T. J., Gamache, I., Gjoerup, O., and Teodoro, J. G. (2011) DNA damage response signaling triggers nuclear localization of the chicken anemia virus protein Apoptin, J. Virol., 85, 12638–12649.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Lee, Y. H., Cheng, C. M., Chang, Y. F., Wang, T. Y., and Yuo, C. Y. (2007) Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization but partially affects its apoptotic activity, Biochem. Biophys. Res. Commun., 354, 391–395.PubMedGoogle Scholar
  154. 154.
    Yu, J., Xie, X., Zheng, M., Yu, L., Zhang, L., Zhao, J., Jiang, D., and Che, X. (2012) Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin, Int. J. Nanomed., 7, 5079–5090.Google Scholar
  155. 155.
    Subramanian, A., Ranganathan, P., and Diamond, S. L. (1999) Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells, Nat. Biotechnol., 17, 873–877.PubMedGoogle Scholar
  156. 156.
    Chan, C., Cai, Z., Su, R., and Reilly, R. M. (2010) 111In-or 99mTc-labeled recombinant VEGF bioconjugates: in vitro evaluation of their cytotoxicity on porcine aortic endothelial cells overexpressing Flt-1 receptors, Nucl. Med. Biol., 37, 105–115.PubMedGoogle Scholar
  157. 157.
    Bisland, S. K., Singh, D., and Gariepy, J. (1999) Potentiation of chlorin e6 photodynamic activity in vitro with peptide-based intracellular vehicles, Bioconjug. Chem., 10, 982–992.PubMedGoogle Scholar
  158. 158.
    Chan, C. K., Hubner, S., Hu, W., and Jans, D. A. (1998) Mutual exclusivity of DNA binding and nuclear localization signal recognition by the yeast transcription factor GAL4: implications for nonviral DNA delivery, Gene Ther., 5, 1204–1212.PubMedGoogle Scholar
  159. 159.
    Kim, B. K., Kang, H., Doh, K. O., Lee, S. H., Park, J. W., Lee, S. J., and Lee, T. J. (2012) Homodimeric SV40 NLS peptide formed by disulfide bond as enhancer for gene delivery, Bioorg. Med. Chem. Lett., 22, 5415–5418.PubMedGoogle Scholar
  160. 160.
    Koumarianou, E., Slastnikova, T. A., Pruszynski, M., Rosenkranz, A. A., Vaidyanathan, G., Sobolev, A. S., and Zalutsky, M. R. (2014) Radiolabeling and in vitro evaluation of Ga-NOTA-modular nanotransporter — a potential Auger electron emitting EGFR-targeted radiotherapeutic, Nucl. Med. Biol., 41, 441–449.PubMedGoogle Scholar
  161. 161.
    Chen, P., Wang, J., Hope, K., Jin, L., Dick, J., Cameron, R., Brandwein, J., Minden, M., and Reilly, R. M. (2006) Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells, J. Nucl. Med., 47, 827–836.PubMedGoogle Scholar
  162. 162.
    Cornelissen, B., and Vallis, K. A. (2010) Targeting the nucleus: an overview of Auger-electron radionuclide therapy, Curr. Drug Discov. Technol., 7, 263–279.PubMedGoogle Scholar
  163. 163.
    Yousif, L. F., Stewart, K. M., and Kelley, S. O. (2009) Targeting mitochondria with organelle-specific compounds: strategies and applications, Chembiochem., 10, 1939–1950.PubMedGoogle Scholar
  164. 164.
    Yousif, L. F., Stewart, K. M., Horton, K. L., and Kelley, S. O. (2009) Mitochondria-penetrating peptides: sequence effects and model cargo transport, Chembiochem., 10, 2081–2088.PubMedGoogle Scholar
  165. 165.
    Frantz, M. C., and Wipf, P. (2010) Mitochondria as a target in treatment, Environ. Mol. Mutagen., 51, 462–475.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Michaud, M., Ubrig, E., Filleur, S., Erhardt, M., Ephritikhine, G., Marechal-Drouard, L., and Duchene, A. M. (2014) Differential targeting of VDAC3 mRNA isoforms influences mitochondria morphology, Proc. Natl. Acad. Sci. USA, 111, 8991–8996.PubMedGoogle Scholar
  167. 167.
    Wang, G., Shimada, E., Koehler, C. M., and Teitell, M. A. (2012) PNPase and RNA trafficking into mitochondria, Biochim. Biophys. Acta, 1819, 998–1007.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Sakhrani, N. M., and Padh, H. (2013) Organelle targeting: third level of drug targeting, Drug Design Devel. Therap., 7, 585–599.Google Scholar
  169. 169.
    Gary-Bobo, M., Nirde, P., Jeanjean, A., Morere, A., and Garcia, M. (2007) Mannose 6-phosphate receptor targeting and its applications in human diseases, Curr. Med. Chem., 14, 2945–2953.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Mossalam, M., Dixon, A. S., and Lim, C. S. (2010) Controlling subcellular delivery to optimize therapeutic effect, Ther. Deliv., 1, 169–193.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Durymanov, M. O., Slastnikova, T. A., Kuzmich, A. I., Khramtsov, Y. V., Ulasov, A. V., Rosenkranz, A. A., Egorov, S. Y., Sverdlov, E. D., and Sobolev, A. S. (2013) Microdistribution of MC1R-targeted polyplexes in murine melanoma tumor tissue, Biomaterials, 34, 10209–10216.PubMedGoogle Scholar
  172. 172.
    Misra, R., and Sahoo, S. K. (2010) Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy, Eur. J. Pharm. Sci., 39, 152–163.PubMedGoogle Scholar
  173. 173.
    Ke, M. R., Yeung, S. L., Fong, W. P., Ng, D. K., and Lo, P. C. (2012) A phthalocyanine-peptide conjugate with high in vitro photodynamic activity and enhanced in vivo tumor-retention property, Chemistry, 18, 4225–4233.PubMedGoogle Scholar
  174. 174.
    Verwilst, P., David, C. C., Leen, V., Hofkens, J., de Witte, P. A., and de Borggraeve, W. M. (2013) Synthesis and in vitro evaluation of a PDT active BODIPY-NLS conjugate, Bioorg. Med. Chem. Lett., 23, 3204–3207.PubMedGoogle Scholar
  175. 175.
    Costantini, D. L., McLarty, K., Lee, H., Done, S. J., Vallis, K. A., and Reilly, R. M. (2010) Antitumor effects and normal-tissue toxicity of 111In-nuclear localization sequence-trastuzumab in athymic mice bearing HER-positive human breast cancer xenografts, J. Nucl. Med., 51, 1084–1091.PubMedGoogle Scholar
  176. 176.
    Cornelissen, B., Waller, A., Target, C., Kersemans, V., Smart, S., and Vallis, K. A. (2012) 111In-BnDTPA-F3: an Auger electron-emitting radiotherapeutic agent that targets nucleolin, EJNMMI Res., 2, 9.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Gedda, L., Fondell, A., Lundqvist, H., Park, J. W., and Edwards, K. (2012) Experimental radionuclide therapy of HER2-expressing xenografts using two-step targeting nuclisome particles, J. Nucl. Med., 53, 480–487.PubMedGoogle Scholar
  178. 178.
    Labhasetwar, V. (2005) Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery, Curr. Opin. Biotechnol., 16, 674–680.PubMedGoogle Scholar
  179. 179.
    Sui, M., Liu, W., and Shen, Y. (2011) Nuclear drug delivery for cancer chemotherapy, J. Control Release, 155, 227–236.PubMedGoogle Scholar
  180. 180.
    Opanasopit, P., Nishikawa, M., and Hashida, M. (2002) Factors affecting drug and gene delivery: effects of interaction with blood components, Crit. Rev. Ther. Drug Carrier Syst., 19, 191–233.PubMedGoogle Scholar
  181. 181.
    Jain, R. K. (1994) Barriers to drug delivery in solid tumors, Sci. Am., 271, 58–65.PubMedGoogle Scholar
  182. 182.
    Jain, R. K. (1999) Understanding barriers to drug delivery: high resolution in vivo imaging is key, Clin. Cancer Res., 5, 1605–1606.PubMedGoogle Scholar
  183. 183.
    Li, Y., Wang, J., Zhu, X., Feng, Q., Li, X., and Feng, X. (2012) Urinary protein markers predict the severity of renal histological lesions in children with mesangial proliferative glomerulonephritis, BMC Nephrol., 13, 29.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Minchinton, A. I., and Tannock, I. F. (2006) Drug penetration in solid tumours, Nat. Rev. Cancer, 6, 583–592.PubMedGoogle Scholar
  185. 185.
    Blackwell, K. L., Burstein, H. J., Storniolo, A. M., Rugo, H. S., Sledge, G., Aktan, G., Ellis, C., Florance, A., Vukelja, S., Bischoff, J., Baselga, J., and O’Shaughnessy, J. (2012) Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 study, J. Clin. Oncol., 30, 2585–2592.PubMedGoogle Scholar
  186. 186.
    LoRusso, P. M., Canetta, R., Wagner, J. A., Balogh, E. P., Nass, S. J., Boerner, S. A., and Hohneker, J. (2012) Accelerating cancer therapy development: the importance of combination strategies and collaboration. Summary of an Institute of Medicine workshop, Clin. Cancer Res., 18, 6101–6109.PubMedGoogle Scholar
  187. 187.
    Bozic, I., Reiter, J. G., Allen, B., Antal, T., Chatterjee, K., Shah, P., Moon, Y. S., Yaqubie, A., Kelly, N., Le, D. T., Lipson, E. J., Chapman, P. B., Diaz, L. A., Jr., Vogelstein, B., and Nowak, M. A. (2013) Evolutionary dynamics of cancer in response to targeted combination therapy, Elife, 2, e00747.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Ziemienowicz, A., Gorlich, D., Lanka, E., Hohn, B., and Rossi, L. (1999) Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium, Proc. Natl. Acad. Sci. USA, 96, 3729–3733.PubMedPubMedCentralGoogle Scholar
  189. 189.
    Rudolph, C., Plank, C., Lausier, J., Schillinger, U., Muller, R. H., and Rosenecker, J. (2003) Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells, J. Biol. Chem., 278, 11411–11418.PubMedGoogle Scholar
  190. 190.
    Cornelissen, B., Hu, M., McLarty, K., Costantini, D., and Reilly, R. M. (2007) Cellular penetration and nuclear importation properties of 111In-labeled and 123I-labeled HIV-1 TAT-peptide immunoconjugates in BT-474 human breast cancer cells, Nucl. Med. Biol., 34, 37–46.PubMedGoogle Scholar
  191. 191.
    Cornelissen, B., Darbar, S., Kersemans, V., Allen, D., Falzone, N., Barbeau, J., Smart, S., and Vallis, K. A. (2012) Amplification of DNA damage by a gamma-H2AX-targeted radiopharmaceutical, Nucl. Med. Biol., 39, 1142–1151.PubMedGoogle Scholar
  192. 192.
    Masuda, T., Akita, H., and Harashima, H. (2005) Evaluation of nuclear transfer and transcription of plasmid DNA condensed with protamine by microinjection: the use of a nuclear transfer score, FEBS Lett., 579, 2143–2148.PubMedGoogle Scholar
  193. 193.
    Cornelissen, B., Waller, A., Able, S., and Vallis, K. A. (2013) Molecular radiotherapy using cleavable radioimmunoconjugates that target EGFR and gamma-H2AX, Mol. Cancer Ther., 12, 2472–2482.PubMedGoogle Scholar
  194. 194.
    Slastnikova, T. A., Rosenkranz, A. A., Lupanova, T. N., Gulak, P. V., Gnuchev, N. V., and Sobolev, A. S. (2012) Study of efficiency of the modular nanotransporter for targeted delivery of photosensitizers to melanoma cell nuclei in vivo, Dokl. Biochem. Biophys., 446, 235–237.PubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. A. Rosenkranz
    • 1
    • 2
  • A. V. Ulasov
    • 1
    • 3
  • T. A. Slastnikova
    • 1
  • Y. V. Khramtsov
    • 1
  • A. S. Sobolev
    • 1
    • 2
    Email author
  1. 1.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Targeted Delivery of Pharmaceuticals “Translek” LLCMoscowRussia

Personalised recommendations