Advertisement

Biochemistry (Moscow)

, Volume 79, Issue 8, pp 826–835 | Cite as

Mutant forms of Escherichia coli protein L25 unable to bind to 5S rRNA are incorporated efficiently into the ribosome in vivo

  • A. Y. Anikaev
  • A. P. Korepanov
  • A. V. Korobeinikova
  • V. G. Kljashtorny
  • W. Piendl
  • S. V. Nikonov
  • M. B. Garber
  • G. M. GongadzeEmail author
Article

Abstract

5S rRNA-binding ribosomal proteins of the L25 family are an evolutional acquisition of bacteria. Earlier we showed that (i) single replacements in the RNA-binding module of the protein of this family result in destabilization or complete impossibility to form a complex with 5S rRNA in vitro; (ii) ΔL25 ribosomes of Escherichia coli are less efficient in protein synthesis in vivo than the control ribosomes. In the present work, the efficiency of incorporation of the E. coli protein L25 with mutations in the 5S rRNA-binding region into the ribosome in vivo was studied. It was found that the mutations in L25 that abolish its ability to form the complex with free 5S rRNA do not prevent its correct and efficient incorporation into the ribosome. This is supported by the fact that even the presence of a very weakly retained mutant form of the protein in the ribosome has a positive effect on the activity of the translational machinery in vivo. All this suggests the existence of an alternative incorporation pathway for this protein into the ribosome, excluding the preliminary formation of the complex with 5S rRNA. At the same time, the stable L25-5S rRNA contact is important for the retention of the protein within the ribosome, and the conservative amino acid residues of the RNA-binding module play a key role in this.

Key words

5S rRNA-binding protein L25 RNA-protein interactions ribosome translation Escherichia coli 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Franceschi, F., and Yonath, A. (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium, Cell, 107, 679–688.PubMedCrossRefGoogle Scholar
  2. 2.
    Schuwirth, B. S., Borovinskaya, M. A., Hau, C. W., Zhang, W., Vila-Sanjurjo, A., Holton, J. M., and Cate, J. H. D. (2005) Structures of the bacterial ribosome at 3.5 resolution, Science, 310, 827–834.PubMedCrossRefGoogle Scholar
  3. 3.
    Selmer, M., Dunham, C. M., Murphy, IV, F. V., Weixlbaumer, A., Petry, S., Kelley, A. C., Weir, J. R., and Ramakrishnan, V. (2006) Structure of the 70S ribosome complexed with mRNA and tRNA, Science, 313, 1935–1942.PubMedCrossRefGoogle Scholar
  4. 4.
    Korostelev, A., Trakhanov, S., Laurberg, M., and Noller, H. F. (2006) Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements, Cell, 126, 1065–1077.PubMedCrossRefGoogle Scholar
  5. 5.
    Yusupova, G., Jenner, L., Rees, B., Moras, D., and Yusupov, M. (2006) Structural basis for messenger RNA movement on the ribosome, Nature, 444, 391–394.PubMedCrossRefGoogle Scholar
  6. 6.
    Voorhees, R. M., Weixlbaumer, A., Loakes, D., Kelley, A. C., and Ramakrishnan, V. (2009) Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome, Nat. Struct. Mol. Biol., 16, 528–533.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Schmeing, T. M., Voorhees, R. M., Kelley, A. C., Gao, Y. G., Murphy, IV, F. V., Weir, J. R., and Ramakrishnan, V. (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA, Science, 326, 688–694.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Gao, Y. G., Selmer, M., Dunham, C. M., Weixlbaumer, A., Kelley, A. C., and Ramakrishnan, V. (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational state, Science, 326, 694–699.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Lecompte, O., Ripp, R., Thierry, J. C., Moras, D., and Poch, O. (2002) Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale, Nucleic Acids Res., 30, 5382–5390.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ban, N., Beckmann, R., Cate, J. H., Dinman, J. D., Dragon, F., Ellis, S. R., Lafontaine, D. L., Lindahl, L., Liljas, A., Lipton, J. M., McAlear, M. A., Moore, P. B., Noller, H. F., Ortega, J., Panse, V. G., Ramakrishnan, V., Spahn, C. M., Steitz, T. A., Tchorzewski, M., Tollervey, D., Warren, A. J., Williamson, J. R., Wilson, D., Yonath, A., and Yusupov, M. (2014) A new system for naming ribosomal proteins, Curr. Opin. Stuct. Biol., 24, 1–5.Google Scholar
  11. 11.
    Lotti, M., Noah, M., Stoffler-Meilicke, M., and Stoffler, G. (1989) Localization of proteins L4, L5, L20 and L25 on the ribosomal surface by immunoelectron microscopy, Mol. Gen. Genet., 216, 245–253.PubMedCrossRefGoogle Scholar
  12. 12.
    Douthwaite, S., Garrett, R. A., Wagner, R., and Feunteun, J. (1979) A ribonuclease-resistant region of 5S RNA and its relation to the RNA binding sites of proteins L18 and L25, Nucleic Acids Res., 6, 2453–2470.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Shpanchenko, O. V., Zvereva, M. I., Dontsova, O. A., Nierhaus, K. H., and Bogdanov, A. A. (1996) 5S rRNA sugar-phosphate backbone protection in complexes with specific ribosomal proteins, FEBS Lett., 394, 71–75.PubMedCrossRefGoogle Scholar
  14. 14.
    Gongadze, G. M., Meshcheryakov, V. A., Serganov, A. A., Fomenkova, N. P., Mudrik, E. S., Jonsson, B. H., Liljas, A., Nikonov, S. V., and Garber, M. B. (1999) N-terminal domain, residues 1–91, of ribosomal protein TL5 from Thermus thermophilus binds specifically and strongly to the region of 5S rRNA containing loop E, FEBS Lett., 451, 51–55.PubMedCrossRefGoogle Scholar
  15. 15.
    Stoldt, M., Wohnert, J., Ohlenschlager, O., Gorlach, M., and Brown, L. R. (1999) The NMR structure of the 5S rRNA E-domain-protein L25 complex shows preformed and induced recognition, EMBO J., 18, 6508–6521.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Lu, M., and Steitz, T. A. (2000) Structure of Escherichia coli ribosomal protein L25 complexed with a 5S rRNA fragment at 1.8 resolution, Proc. Natl. Acad. Sci. USA, 97, 2023–2028.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Fedorov, R., Meshcheryakov, V., Gongadze, G., Fomenkova, N., Nevskaya, N., Selmer, M., Laurberg, M., Kristensen, O., Al-Karadaghi, S., Liljas, A., Garber, M., and Nikonov, S. (2001) Structure of ribosomal protein TL5 complexed with RNA provides new insights into the CTC family of stress proteins, Acta Crystallogr. Sect. D, 57, 968–976.CrossRefGoogle Scholar
  18. 18.
    Korepanov, A. P., Gongadze, G. M., and Garber, M. B. (2004) General stress protein CTC from Bacillus subtilis specifically binds to ribosomal 5S RNA, Biochemistry (Moscow), 69, 607–611.CrossRefGoogle Scholar
  19. 19.
    Korobeinikova, A. V., Gongadze, G. M., Korepanov, A. P., Eliseev, B. D., Bazhenova, M. V., and Garber, M. B. (2008) 5S rRNA-recognition module of CTC family proteins and its evolution, Biochemistry (Moscow), 73, 156–163.CrossRefGoogle Scholar
  20. 20.
    Spierer, P., Bogdanov, A. A., and Zimmermann, R. A. (1978) Parameters for interaction of ribosomal proteins L5, L18, and L25 with 5S RNA from Escherichia coli, Biochemistry, 17, 5394–5398.PubMedCrossRefGoogle Scholar
  21. 21.
    Gongadze, G. M., Korepanov, A. P., Stolboushkina, E. A., Zelinskaya, N. V., Korobeinikova, A. V., Ruzanov, M. V., Eliseev, B. D., Nikonov, O. S., Nikonov, S. V., Garber, M. B., and Lim, V. I. (2005) The crucial role of conserved intermolecular H-bonds inaccessible to the solvent in formation and stabilization of the TL5-5S rRNA complex, J. Biol. Chem., 280, 16151–16156.PubMedCrossRefGoogle Scholar
  22. 22.
    Korepanov, A. P., Korobeinikova, A. V., Shestakov, S. A., Garber, M. B., and Gongadze, G. M. (2012) Protein L5 is crucial for in vivo assembly of the bacterial 50S ribosomal subunit central protuberance, Nucleic Acids Res., 40, 9153–9159.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hecker, M., and Volker, U. (1990) General stress proteins in Bacillus subtilis, FEMS Microbiol. Ecol., 74, 197–214.CrossRefGoogle Scholar
  24. 24.
    Schmalisch, M., Langbein, I., and Stulke, J. (2002) The general stress protein CTC of Bacillus subtilis is a ribosomal protein, J. Mol. Microbiol. Biotechnol., 4, 495–501.PubMedGoogle Scholar
  25. 25.
    Miller, J. H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  26. 26.
    Korepanov, A. P., Gongadze, G. M., Garber, M. B., Court, D. L., and Bubunenko, M. G. (2007) Importance of the 5S rRNA-binding ribosomal proteins for cell viability and translation in Escherichia coli, J. Mol. Biol., 366, 1199–1208.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Yu, D., Ellis, H. M., Lee, E. C., Jenkins, N. A., Copeland, N. G., and Court, D. L. (2000) An efficient recombination system for chromosome engineering in Escherichia coli, Proc. Natl. Acad. Sci. USA, 97, 5978–5983.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heyneker, H. L., Boyer, H. W., Crosa, J. H., and Falkow, S. (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system, Gene, 2, 95–113.PubMedCrossRefGoogle Scholar
  29. 29.
    Bachmann, B. J. (1972) Pedigrees of some mutant strains of Escherichia coli K-12, Bacteriol. Rev., 36, 525–557.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Thomason, L. C., Costantino, N., and Court, D. L. (2007) Escherichia coli genome manipulation by P1 transduction, Curr. Protoc. Mol. Biol., 79, pp. 1.17.1–1.17.8, John Wiley & Sons, Inc.CrossRefGoogle Scholar
  31. 31.
    Erbe, R. W., Nau, M. M., and Leder, P. (1969) Translation and translocation of defined RNA messengers, J. Mol. Biol., 38, 441–460.CrossRefGoogle Scholar
  32. 32.
    Staehelin, T., Maglott, D. M., and Monro, R. E. (1969) On the catalytic center of peptidyl transfer: a part of the 50S ribosome structure, Cold Spring Harb. Symp. Quant. Biol., 34, 39–48.PubMedCrossRefGoogle Scholar
  33. 33.
    Madjar, J. J., Michel, S., Cozzone, A. J., and Reboud, J. P. (1979) A method to identify individual proteins in four different two-dimensional electrophoresis systems: application to Escherichia coli ribosomal proteins, Anal. Biochem., 92, 174–182.PubMedCrossRefGoogle Scholar
  34. 34.
    Kostareva, O., Tishchenko, S., Nikonova, E., Kljashtorny, V., Nevskaya, N., Nikulin, A., Sycheva, A., Moshkovskii, S., Piendl, W., Garber, M., and Nikonov, S. (2011) Disruption of shape complementarity in the ribosomal protein L1-RNA contact region does not hinder specific recognition of the RNA target site, J. Mol. Recognit., 4, 524–532.CrossRefGoogle Scholar
  35. 35.
    Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008) GROMACS 4: Algorithms for highly efficient, loadbalanced, and scalable molecular simulation, J. Chem. Theory Comp., 4, 435–447.CrossRefGoogle Scholar
  36. 36.
    MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., and Ha, S. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B., 102, 3586–3616.PubMedGoogle Scholar
  37. 37.
    MacKerell, A. D., Feig, M., and Brooks, C. L. (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations, J. Comp. Chem., 25, 1400–1415.CrossRefGoogle Scholar
  38. 38.
    Nevskaya, N. A., Nikonov, O. S., Revtovich, C. V., and Garber, M. B. (2004) Identification of RNA-recognizing modules on the surface of ribosomal proteins, Mol. Biol. (Moscow), 38, 926–936.CrossRefGoogle Scholar
  39. 39.
    Kaczanowska, M., and Ryden-Aulin, M. (2007) Ribosome biogenesis and the translation process in Escherichia coli, Microbiol. Mol. Biol. Rev., 71, 477–494.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Wilson, D. N., and Nierhaus, K. H. (2007) The weird and wonderful world of bacterial ribosome regulation, Crit. Rev. Biochem. Mol. Biol., 42, 187–219.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. Y. Anikaev
    • 1
  • A. P. Korepanov
    • 1
  • A. V. Korobeinikova
    • 1
  • V. G. Kljashtorny
    • 1
  • W. Piendl
    • 2
  • S. V. Nikonov
    • 1
  • M. B. Garber
    • 1
  • G. M. Gongadze
    • 1
    Email author
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Division of Medical Biochemistry, BiocenterInnsbruck Medical UniversityInnsbruckAustria

Personalised recommendations