Biochemistry (Moscow)

, Volume 79, Issue 7, pp 706–716 | Cite as

MS2 phage ribonucleoproteins as exogenous internal control for RT-qPCR data normalization in gene expression study of developing rat brain

  • L. A. FedoseevaEmail author
  • O. B. Shevelev
  • N. G. Kolosova
  • G. M. Dymshits


The most popular strategy for normalization of RT-qPCR data involves presenting them in comparison with expression of “housekeeping” genes. However, the required stable expression of the control genes is not always achievable. As an alternative, we used ribonucleoprotein phage particles as an exogenous internal control and demonstrated that this type of normalization provides a simple and reliable method for quantification in RT-qPCR experiments. Using phage-based normalization, we analyzed mRNA levels of three popular housekeeping genes coding β-actin, glyceraldehyde-3-phosphate dehydrogenase, and ribosomal protein L30 and showed high variability in their expression patterns during rat brain development, indicating that they should not be used as controls in gene expression studies of the developing brain either individually or in combination. Using phage-based controls, we showed interstrain differences and age-related changes in the expression of genes involved in proteoglycan biosynthesis and degradation in developing brain of senescenceaccelerated OXYS rats and control Wistar rats.

Key words

PCR data normalization reference genes housekeeping genes exogenous internal control ribonucleoprotein particles senescence-accelerated OXYS rats 



β-actin gene


exogenous internal amplification control

Ext1 and Ext2

exostosins (EXT) 1 and 2 genes, respectively


glyceraldehyde-3′-phosphate dehydrogenase gene


heparanase gene


heparan sulfate proteoglycans


ribosomal protein L30 gene


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bustin, S. A., and Nolan, T. (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction, J. Biomol. Tech., 15, 155–166.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Dheda, K., Huggett, J. F., Chang, J. S., Kim, L. U., Bustin, S. A., Johnson, M. A., Rook, G. A., and Zumla, A. (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization, Anal. Biochem., 344, 141–143.PubMedCrossRefGoogle Scholar
  3. 3.
    Sturzenbaum, S. R., and Kille, P. (2001) Control genes in quantitative molecular biological techniques: the variability of invariance, Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol., 130, 281–289.Google Scholar
  4. 4.
    Zhu, L. J., and Altmann, S. W. (2005) mRNA and 18S-RNA coapplication-reverse transcription for quantitative gene expression analysis, Anal. Biochem., 345, 102–109.PubMedCrossRefGoogle Scholar
  5. 5.
    Ullmannova, V., and Haskovec, C. (2003) The use of housekeeping genes (HKG) as an internal control for the detection of gene expression by quantitative real-time RT-PCR, Folia Biol. (Praha), 49, 211–216.Google Scholar
  6. 6.
    Backman, C. M., Shan, L., Zhang, Y. J., Hoffer, B. J., Leonard, S., Troncoso, J. C., Vonsatel, P., and Tomac, A. C. (2006) Gene expression patterns for GDNF and its receptors in the human putamen affected by Parkinson’s disease: a real-time PCR study, Mol. Cell Endocrinol., 252, 160–166.PubMedCrossRefGoogle Scholar
  7. 7.
    Meldgaard, M., Fenger, C., Lambertsen, K. L., Pedersen, M. D., Ladeby, R., and Finsen, B. (2006) Validation of two reference genes for mRNA level studies of murine disease models in neurobiology, J. Neurosci. Methods, 156, 101–110.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhong, H., and Simons, J. W. (1999) Direct comparison of GAPDH, β-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia, Biochem. Biophys. Res. Commun., 259, 523–526.PubMedCrossRefGoogle Scholar
  9. 9.
    Glare, E. M., Divjak, M., Bailey, M. J., and Walters, E. H. (2002) β-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalizing mRNA levels, Thorax, 57, 765–770.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Aerts, J. L., Gonzales, M. I., and Topalian, S. L. (2004) Selection of appropriate control genes to assess expression of tumor antigens using real-time RT-PCR, Biotechniques, 36, 84–91.PubMedGoogle Scholar
  11. 11.
    Bas, A., Forsberg, G., Hammarstrom, S., and Hammarstrom, M. L. (2004) Utility of the housekeeping genes 18S rRNA, β-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes, Scand. J. Immunol., 59, 566–573.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhou, L., Lim, Q. E., Wan, G., and Too, H. P. (2010) Normalization with genes encoding ribosomal proteins but not GAPDH provides an accurate quantification of gene expressions in neuronal differentiation of PC12 cells, BMC Genomics, 11, 75.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Yue, H., Lei, X. W., Yang, F. L., Li, M. Y., and Tang, C. (2010) Reference gene selection for normalization of PCR analysis in chicken embryo fibroblast infected with H5N1 AIV, Virol. Sin., 25, 425–431.PubMedCrossRefGoogle Scholar
  14. 14.
    Leduc, V., Legault, V., Dea, D., and Poirier, J. (2011) Normalization of gene expression using SYBR green qPCR: A case for paraoxonase 1 and 2 in Alzheimer’s disease brains, J. Neurosci. Methods, 200, 14–19.PubMedCrossRefGoogle Scholar
  15. 15.
    Huggett, J., Dheda, K., Bustin, S., and Zumla, A. (2005) Real-time RT-PCR normalization; strategies and considerations, Genes Immun., 6, 279–284.PubMedCrossRefGoogle Scholar
  16. 16.
    Nolan, T., Hands, R. E., Ogunkolade, W., and Bustin, S. A. (2006) SPUD: a quantitative PCR assay for the detection of inhibitors in nucleic acid preparations, Anal. Biochem., 351, 308–310.PubMedCrossRefGoogle Scholar
  17. 17.
    Dreier, J., Stormer, M., and Kleesiek, K. (2005) Use of bacteriophage MS2 as an internal control in viral reverse transcription-PCR assays, J. Clin. Microbiol., 43, 4551–4557.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ivanov, M. K., Bragin, A. G., Prasolova, M. A., Vedernikov, V. E., and Dymshits, G. M. (2009) Development of noncompetitive exogenous internal amplification control for real-time PCR based on UFA method, Mol. Gen. Microbiol. Virol., 24, 121–127.Google Scholar
  19. 19.
    Shevelev, O. B., Rykova, V. I., Fedoseeva, L. A., Leberfarb, E. Yu., Dymshits, G. M., and Kolosova, N. G. (2012) Ext1, Ext2, and heparanase gene expression in brain of senescenceaccelerated OXYS rats in early ontogenesis and in the period of neurodegeneration, Biochemistry (Moscow), 77, 56–61.CrossRefGoogle Scholar
  20. 20.
    Yamaguchi, Y., Inatani, M., Matsumoto, Y., Ogawa, J., and Irie, F. (2010) Roles of heparan sulfate in mammalian brain development current views based on the findings from Ext1 conditional knockout studies, Prog. Mol. Biol. Transl. Sci., 93, 133–152.PubMedCrossRefGoogle Scholar
  21. 21.
    Inatani, M., and Yamaguchi, Y. (2003) Gene expression of EXT1 and EXT2 during mouse brain development, Brain Res. Dev. Brain Res., 141, 129–136.PubMedGoogle Scholar
  22. 22.
    Sergeeva, S. V., Bagryanskaya, E. G., Korbolina, E. E., and Kolosova, N. G. (2006) Development of behavioural dysfunctions in accelerated-senescence OXYS rats is associated with early postnatal alterations in brain phosphate metabolism, Exp. Gerontol., 41, 141–150.PubMedCrossRefGoogle Scholar
  23. 23.
    Kolosova, N. G., Stefanova, N. A., and Sergeeva, S. V. (2009) OXYS rats: a prospective model for evaluation of antioxidant availability in prevention and therapy of accelerated aging and age-related cognitive decline, in Handbook of Cognitive Aging: Causes, Proceses (Gariepy, Q., and Menard, R., eds.) Nova Science Publishers, N.Y., pp. 47–82.Google Scholar
  24. 24.
    Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol., 3, Research 0034.1-0034.11.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • L. A. Fedoseeva
    • 1
    Email author
  • O. B. Shevelev
    • 1
  • N. G. Kolosova
    • 1
  • G. M. Dymshits
    • 2
  1. 1.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations