Biochemistry (Moscow)

, Volume 79, Issue 7, pp 694–705 | Cite as

Study of effect of substitution of the penultimate amino acid residue on expression, structure, and functional properties of Yersinia pseudotuberculosis OmpY porin

  • T. F. Solov’evaEmail author
  • N. M. Tischenko
  • V. A. Khomenko
  • O. Y. PortnyaginaEmail author
  • N. Y. Kim
  • G. N. Likhatskaya
  • O. D. Novikova
  • M. P. IsaevaEmail author


The purpose of the study was to compare the expression of two Yersinia pseudotuberculosis proteins, wild-type porin OmpY and the mutant porin OmpY designated as OmpY-Q having the uncharged amino acid residue Gln instead of positively charged Arg at the penultimate position in the same heterologous host. According to the literature, a similar substitution (Lys to Gln) of the penultimate amino acid residue in Neisseria meningitidis porin PorA drastically improved the assembly of the protein in the E. coli outer membrane in vivo. Site-directed mutagenesis was used to replace Arg by Gln (R338Q) in OmpY, and the conditions for optimal expression and maturation of OmpY-Q were selected. It was found that the growth rates of E. coli strains producing OmpY and OmpY-Q and the expression levels of the porins were approximately equal. Comparative analysis of recombinant OmpY and OmpY-Q did not show significant differences in structure, antigenic, and functional properties of the porins, or any noticeable effect of the R338Q substitution in OmpY on its assembly in the E. coli outer membrane in vivo. The probable causes of discrepancies between our results and the previous data on porin PorA are discussed considering the known mechanisms of biogenesis of porins at the periplasmic stage.

Key words

Yersinia pseudotuberculosis outer membrane pore-forming proteins site-directed mutagenesis biogenesis of porins spatial structure computer modeling 



bilayer lipid membrane


cytoplasmic membrane




outer membrane


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Papanikou, E., Karamanou, S., and Economou, A. (2007) Bacterial protein secretion through the translocase nanomachine, Nat. Rev. Microbiol., 5, 839–851.PubMedCrossRefGoogle Scholar
  2. 2.
    Solov’eva, T. F., Novikova, O. D., and Portnyagina, O. Yu. (2012) Biogenesis of β-barrel integral proteins of bacterial outer membrane, Biochemistry (Moscow), 77, 1221–1236.CrossRefGoogle Scholar
  3. 3.
    Struyve, M., Moons, M., and Tommassen, J. (1991) Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein, J. Mol. Biol., 218, 141–148.PubMedCrossRefGoogle Scholar
  4. 4.
    Robert, V., Volokhina, E. B., Senf, F., Bos, M. P., van Gelder, P., and Tommassen, J. (2006) Assembly factor Omp85 recognizes its outer membrane protein substrate by a species-specific C-terminal motif, PLoS Biol., 4, 1984–1995.CrossRefGoogle Scholar
  5. 5.
    Solov’eva, T. F., Likhatskaya, G. N., Khomenko, V. A., Stenkova, A. M., Kim, N. Yu., Portnyagina, O. Yu., Novikova, O. D., Trifonov, E. V., Nurminski, E. A., and Isaeva, M. P. (2011) A novel OmpY porin from Yersinia pseudotuberculosis: structure, channel-forming activity and trimer thermal stability, J. Biomol. Struct. Dyn., 28, 517–533.PubMedCrossRefGoogle Scholar
  6. 6.
    Prilipov, A., Phale, P. S., Gelder, P. V., Rosenbusch, J. P., and Koebnik, R. (1998) Coupling site-directed mutagenesis with high-level expression: large scale production of mutant porins from Escherichia coli, FEMS Microbiol. Lett., 163, 65–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Sambrook, J., and Russel, D. W. (2001) in Molecular Cloning, Laboratory Manual, 3rd Edn., Cold Spring Harbor Laboratory Press, N. Y., pp. 16.33–16.36.Google Scholar
  8. 8.
    Tamura, K., Dudley, J., Ney, M., and Kumar, S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 24, 1596–1599.PubMedCrossRefGoogle Scholar
  9. 9.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  10. 10.
    Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. USA, 76, 4350–4354.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Provencher, S. W., and Glockner, J. (1981) Estimation of globular protein secondary structure from circular dichroism, Biochemistry, 20, 33–37.PubMedCrossRefGoogle Scholar
  12. 12.
    Burrstein, E. A., Vedenkina, N. S., and Ivkova, M. N. (1973) Fluorescence and the location of tryptophan residues in protein molecules, Photochem. Photobiol., 8, 263–279.CrossRefGoogle Scholar
  13. 13.
    Marquardt, D. W. (1963) An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math., 11, 431–441.CrossRefGoogle Scholar
  14. 14.
    Muller, P., Rudin, O. D., Tien, H. T., and Wescott, W. C. (1962) Reconstitution of cell membrane structure in vivo and its transformation into an excitable system, Nature, 194, 979–980.CrossRefGoogle Scholar
  15. 15.
    Likhatskaya, G. N., Novikova, O. D., Solov’eva, T. F., and Ovodov, Yu. S. (1985) Isolation of pore-forming protein from the outer membrane of Yersinia pseudotuberculosis and the study of its effect on conductivity of bilayer lipid membranes, Biol. Membr., 2, 1219–1224.Google Scholar
  16. 16.
    Guex, N., and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling, Electrophoresis, 18, 2714–2723.PubMedCrossRefGoogle Scholar
  17. 17.
    Lugtenberg, D., and van Alphen, L. (1983) Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria, Biochim. Biophys. Acta, 737, 51–115.PubMedCrossRefGoogle Scholar
  18. 18.
    Novikova, O. D., Fedoreeva, L. I., Khomenko, V. A., Portnyagina, O. Yu., Ermak, I. M., Likhatskaya, G. N., Moroz, S. I., Solov’eva, T. F., and Ovodov, Yu. S. (1993) The effect of the method of extraction of the pore-forming protein from Yersinia pseudotuberculosis on its macromolecular organization, Bioorg. Khim., 19, 536–547.Google Scholar
  19. 19.
    Schumann, W., and Ferreira, S. L. C. (2004) Production of recombinant proteins in Escherichia coli, Genet. Mol. Biol., 27, 442–453.CrossRefGoogle Scholar
  20. 20.
    Sorensen, H. P., and Mortensen, K. K. (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli, J. Biotechnol., 115, 113–128.PubMedCrossRefGoogle Scholar
  21. 21.
    Rosenbusch, J. P. (1974) Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding, J. Biol. Chem., 249, 8019–8029.PubMedGoogle Scholar
  22. 22.
    Nakamura, K., and Mizushima, S. (1976) Effect of heating in dodecyl sulfate solution on the conformation and electrophoretic mobility of isolated major outer membrane proteins from Escherichia coli K12, J. Biochem., 80, 1411–1422.PubMedGoogle Scholar
  23. 23.
    Serdyuk, I., Zaccai, N., and Zaccai, J. (2010) in Methods in Molecular Biophysics: Structure, Dynamics, Function, Vol. 2 (Serdyuk, I. N., ed.) KDU Publishers, Moscow, pp. 503–505.Google Scholar
  24. 24.
    Tieleman, D. P., Forrest, L. R., Sansom, M. S. P., and Berendsen, H. J. C. (1998) Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations, Biochemistry, 37, 17554–17561.PubMedCrossRefGoogle Scholar
  25. 25.
    Vivian, J. T., and Callis, P. R. (2001) Mechanisms of tryptophan fluorescence shifts in proteins, Biophys. J., 80, 2093–2109.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Sklar, J. G., Wu, T., Kahne, D., and Silhavy, N. J. (2007) Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli, Genes Dev., 21, 2473–2484.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Volokhina, E. B., Grijpstra, J., Stork, M., Schilders, I., Tommassen, J., and Bos, M. P. (2011) Role of the periplasmic chaperones Skp, SurA and DegQ in outer membrane protein biogenesis in Neisseria meningitidis, J. Bacteriol., 193, 1612–1621.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Struyve, M., Moons, M., and Tommassen, J. (1991) Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein, J. Mol. Biol., 218, 141–148.PubMedCrossRefGoogle Scholar
  29. 29.
    Klose, V., Schwarz, H., MacIntyre, S., Freudl, R., Eschbach, M.-L., and Henning, U. (1988) Internal deletions in the gene for an Escherichia coli outer membrane protein define an area possibly important for recognition of the outer membrane by this polypeptide, J. Biol. Chem., 263, 13291–13296.PubMedGoogle Scholar
  30. 30.
    Paramasivam, N., Habeck, M., and Linke, D. (2012) Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not, BMC Genom., 13, 510–525.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Elyakov Pacific Institute of Bioorganic ChemistryFar East Branch of the Russian Academy of SciencesVladivostokRussia

Personalised recommendations