Biochemistry (Moscow)

, Volume 79, Issue 7, pp 637–642 | Cite as

Selective inhibitor of histone deacetylase 6 (tubastatin A) suppresses proliferation of hepatitis C virus replicon in culture of human hepatocytes

  • M. V. KozlovEmail author
  • A. A. Kleymenova
  • K. A. Konduktorov
  • A. Z. Malikova
  • S. N. Kochetkov
Accelerated Publication


Acetylation of α-tubulin was studied in cultures of human hepatocytes under the influence of selective inhibitors of histone deacetylases HDAC6 and SIRT-2 — tubastatin A and 2-(3-phenethoxyphenylamino)benzamide, respectively. It was found that in hepatocyte cell line HepG2 acetylated α-tubulin is accumulated preferentially on inhibition of HDAC6 but not of SIRT-2. Under the same conditions, no acetylation of α-tubulin was observed in hepatocyte cell line Huh7. However, the inhibition of HDAC6 with tubastatin A led to hyperacetylation of α-tubulin and simultaneously to decrease in viral RNA concentration in hepatocyte cell line Huh7-luc/neo, which supports propagation of the full genome replicon of hepatitis C virus. The correlation between these two processes points to HDAC6 as a promising cellular target for therapy of hepatitis C.

Key words

human hepatocytes acetylation of α-tubulin HDAC6 and SIRT-2 hepatitis C virus replicon 



hepatitis C virus


Zn2+-dependent histone deacetylase 6




NAD+-dependent histone deacetylase


α-tubulin acetyltransferase of mammals


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singh, B. N., Zhang, G., Hwa, Y. L., Li, J., Sean, C., Dowdy, S. C., and Jiang, S. W. (2010) Nonhistone protein acetylation as cancer therapy targets, Expert Rev. Anticancer Ther., 10, 935–954.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Shida, T., Cueva, J. G., Xu, Z., Goodman, M. B., and Nachury, M. V. (2010) The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation, PNAS, 107, 21517–21522.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Matsuyama, A., Shimazu, T., Sumida, Y., Saito, A., Yoshimatsu, Y., Seigneurin-Berny, D., Osada, H., Komatsu, Y., Nishino, N., Khochbin, S., Horinouchi, S., and Yoshida, M. (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation, EMBO J., 21, 6820–6831.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X. F., and Yao, T. P. (2002) HDAC6 is a microtubule-associated deacetylase, Nature, 417, 455–458.PubMedCrossRefGoogle Scholar
  5. 5.
    North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M., and Verdin, E. (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase, Mol. Cell, 11, 437–444.PubMedCrossRefGoogle Scholar
  6. 6.
    Nahhas, F., Dryden, S. C., Abrams, J., and Tainsky, M. A. (2007) Mutations in SIRT2 deacetylase which regulate enzymatic activity but not its interaction with HDAC6 and tubulin, Mol. Cell. Biochem., 303, 221–230.PubMedCrossRefGoogle Scholar
  7. 7.
    Janke, C., and Bulinski, J. C. (2011) Posttranslational regulation of the microtubule cytoskeleton: mechanisms and functions, Nat. Rev. Mol. Cell Biol., 12, 773–786.PubMedCrossRefGoogle Scholar
  8. 8.
    Zilberman, Y., Ballestrem, C., Carramusa, L., Mazitschek, R., Khochbin S., and Bershadsky, A. (2009) Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6, J. Cell Sci., 122, 3531–3541.PubMedCrossRefGoogle Scholar
  9. 9.
    Witt, O., Deubzer, H. E., Milde, T., and Oehme, I. (2009) HDAC family: what are the cancer relevant targets? Cancer Lett., 277, 8–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Simoes-Pires, C., Zwick, V., Nurisso, A., Schenker, E., Carrupt, P. A., and Cuendet, M. (2013) HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol. Neurodegener., 8, 7–22.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Taes, I., Timmers, M., Hersmus, N., Bento-Abreu, A., Van Den Bosch, L., Van Damme, P., Auwerx, J., and Robberecht, W. (2013) Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS, Hum. Mol. Genet., 22, 1783–1790.PubMedCrossRefGoogle Scholar
  12. 12.
    Roohvand, F., Maillard, P., Lavergne, J. P., Boulant, S., Walic, M., Andreo, U., Goueslain, L., Helle, F., Mallet, A., McLauchlan, J., and Budkowska, A. (2009) Initiation of hepatitis C virus infection requires the dynamic microtubule network, J. Biol. Chem., 284, 13778–13791.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Bost, A. G., Venable, D., Liu, L., and Heinz, B. A. (2003) Cytoskeletal requirements for hepatitis C virus (HCV) RNA synthesis in the HCV replicon cell culture system, J. Virol., 77, 4401–4408.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Lai, C. K., Jeng, K. S., Machida, K., and Lai, M. M. (2008) Association of hepatitis C virus replication complexes with microtubules and actin filaments is dependent on the interaction of NS3 and NS5A, J. Virol., 82, 8838–8848.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Wolk, B., Buchele, B., Moradpour, D., and Rice, C. M. (2008) A dynamic view of hepatitis C virus replication complexes, J. Virol., 82, 10519–10531.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Sato, A., Saito, Y., Sugiyama, K., Sakasegawa, N., Muramatsu, T., Fukuda, S., Yoneya, M., Kimura, M., Ebinuma, H., Hibi, T., Ikeda, M., Kato, N., and Saito, H. (2013) Suppressive effect of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) on hepatitis C virus replication, J. Cell. Biochem., 114, 1987–1996.PubMedCrossRefGoogle Scholar
  17. 17.
    Kozlov, M. V., Kleymenova, A. A., Romanova, L. I., Konduktorov, K. A., Smirnova, O. A., Prasolov, V. S., and Kochetkov, S. N. (2013) Benzohydroxamic acids as potent and selective anti-HCV agents, Bioorg. Med. Chem. Lett., 23, 5936–5940.PubMedCrossRefGoogle Scholar
  18. 18.
    Kozlov, M. V., Kleymenova, A. A., Konduktorov, K. A., and Kochetkov, S. N. (2013) A new synthesis of a highly selective inhibitor of histone deacetylase 6-N-hydroxy-4-(2-methyl-1,2,3,4-tetrahydropyrido[4,3-b]indol-5-ylmethyl)benzamide — tubastatin A, Bioorg. Khim., 39, 117–120.PubMedGoogle Scholar
  19. 19.
    Suzuki, T., Khan, M. N., Sawada, H., Imai, E., Itoh, Y., Yamatsuta, K., Tokuda, N., Takeuchi, J., Seko, T., Nakagawa, H., and Miyata, N. (2012) Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors, J. Med. Chem., 55, 5760–5773.PubMedCrossRefGoogle Scholar
  20. 20.
    Wagner, F. F., Olson, D. E., Gale, J. P., Kaya, T., Weiver, M., Aidoud, N., Thomas, M., Davoine, E. L., Lemercier, B. C., and Holson, E. B. (2013) Potent and selective inhibition of histone deacetylase 6 (HDAC6) does not require a surface-binding motif, J. Med. Chem., 56, 1772–1776.PubMedCrossRefGoogle Scholar
  21. 21.
    Butler, K. V., Kalin, J., Brochier, C., Vistoli, G., Langley, B., and Kozikowski, A. P. (2010) Rational design and simple chemistry yield of a superior, neuroprotective HDAC6 inhibitor, tubastatin A, J. Am. Chem. Soc., 132, 10842–10846.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Kovacs, J. J., Murphy, P., Gaillard, S., Zhao, X., Wu, J. T., Nicchitta, C. V., Yoshida, M., Toft, D. O., Pratt, W. B., and Yao, T. P. (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor, Mol. Cell., 18, 601–607.PubMedCrossRefGoogle Scholar
  23. 23.
    Ujino, S., Yamaguchi, S., Shimotohno, K., and Takaku, H. (2009) Heat-shock protein 90 is essential for stabilization of the hepatitis C virus nonstructural protein NS3, J. Biol. Chem., 284, 6841–6846.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Parmigiani, R. B., Xu, W. S., Venta-Perez, G., Erdjument-Bromage, H., Yaneva, M., Tempst, P., and Marks, P. A. (2008) HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation, PNAS, 105, 9633–9638.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Waris, G., Turkson, J., Hassanein, T., and Siddiqui, A. (2005) Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress: role of STAT-3 in HCV replication, J. Virol., 79, 1569–1580.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Wyles, D. (2012) Beyond telaprevir and boceprevir: resistance and new agents for hepatitis C virus infection, Top Antivir. Med., 20, 139–145.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. V. Kozlov
    • 1
    Email author
  • A. A. Kleymenova
    • 1
  • K. A. Konduktorov
    • 1
  • A. Z. Malikova
    • 2
  • S. N. Kochetkov
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Kazan Federal UniversityKazan, Republic of TatarstanRussia

Personalised recommendations