Advertisement

Biochemistry (Moscow)

, Volume 79, Issue 7, pp 619–636 | Cite as

Secondary biochemical and morphological consequences in lysosomal storage diseases

  • J. Alroy
  • C. Garganta
  • G. WiederschainEmail author
Review

Abstract

More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs. The investigation of biochemical and cellular parameters is of particular interest for understanding “life” of lysosomes in the normal state and in LSDs. This review highlights the wide spectrum of biochemical and morphological changes during developing LSDs that are extremely critical for many metabolic processes inside the various cells and tissues of affected persons. The data presented will help establish new complex strategies for metabolic correction of LSDs.

Key words

lysosomes lysosomal storage diseases autophagy pathogenic cascades recycling deficiency of lysosomal enzymes and protein cofactors metabolic correction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vitner, E. B., Platt, F. M., and Futerman, A. H. (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases, J. Biol. Chem., 285, 20423–20427.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Ma, X., Tittiger, M., Kuntsen, R. H., Kovacs, A., Schaller, L., Mechan, R. P., and Ponder, K. P. (2008) Upregulation of elastase proteins results in aortic dilatation in mucopolysaccharidosis I mice, Mol. Genet. Metab., 94, 298–304.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Saftig, P., and Klumperman, J. (2009) Lysosomal biogenesis and lysosomal membrane proteins: traffic meets function, Nature Rev. Mol. Cell Biol., 10, 623–635.Google Scholar
  4. 4.
    Chen, Y., and Yu, L. (2013) Autophagic lysosomal reformation, Exp. Cell Res., 319, 142–146.PubMedGoogle Scholar
  5. 5.
    Ruivo, R., Anne, C., Sagne, C., and Gasnier, B. (2009) Molecular and cellular basis of lysosomal transmembrane protein dysfunction, Biochim. Biophys. Acta, 1793, 636–649.PubMedGoogle Scholar
  6. 6.
    Kornfeld, S., and Mellman, I. (1989) The biogenesis of lysosomes, Ann. Rev. Cell Biol., 5, 483–526.PubMedGoogle Scholar
  7. 7.
    Ghosh, P., Dahms, N. M., and Kornfeld, S. (2003) Mannose 6-phosphate receptors: new twists in the tale, Nat. Rev. Mol. Cell Biol., 4, 202–212.PubMedGoogle Scholar
  8. 8.
    Mardones, G., Burgos, P. V., Brooks, D. A., Parkinson-Lawrence, E., Mattera, R., and Bonkfacino, J. C. (2007) The trans-Golgi network accessory protein p56 promotes long-range movement of GGA/Clathrin-containing transport carriers and lysosomal enzyme sorting, Mol. Biol. Cell, 18, 1486–1501.Google Scholar
  9. 9.
    Filocamo, M., and Morrone, A. (2011) Lysosomal storage disorders: molecular basis and laboratory testing, Hum. Genom., 5, 156–169.Google Scholar
  10. 10.
    Cuervo, A. N., Mann, L., Bonten, E. J., d’Azzo, A., and Dice, J. F. (2003) Cathepsin A regulates chaperone-mediated autophagy through cleavage of lysosomal receptor, EMBO J., 22, 47–59.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Hsu, C-L., Lin, W., Seshasayee, D., Chen, Y-H., Ding, X., Lin, Z., Suto, E., Huang, Z., Lee, W. P., Park, H., Xu, M., Sun, M., Rangell, L., Lutman, J. L., Ulufatu, S., Stefanich, E., Chalouni, C., Sagolla, M., Diehl, L., Fiedler, P., Dean, B., Balazs, M., and Martin, F. (2012) Equilibrative nucleoside transporter 3 deficiency perturbs lysosomal function and macrophage homeostasis, Science, 335, 89–92.PubMedGoogle Scholar
  12. 12.
    Alroy, J., Pfannl, R., and Ucc, A. A. (2013) Electron microscopy as a useful tool in the diagnosis of lysosomal storage diseases, in Diagnostic Electron Microscopy: A Practical Guide to Interpretation and Technique (Stirling, J. W., Curry, A., and Eyden, B., eds.) John Wiley & Sons Ltd, pp. 237–267.Google Scholar
  13. 13.
    Leinekugel, P., Michel, S., Conzelmann, E., and Sandhoff, K. (1992) Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease, Hum. Genet., 88, 513–523.PubMedGoogle Scholar
  14. 14.
    Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (eds.) (2001) Lysosomal disorders, in The Metabolic and Molecular Bases of Inherited Disease, 8th Edn., Vol. III, McGraw-Hill, pp. 3371–3894.Google Scholar
  15. 15.
    Wiederschain, G. Ya. (1980) Biochemical Bases of Glycosidoses [in Russian], Meditsina, Moscow.Google Scholar
  16. 16.
    Wiederschain, G. Ya. (1982) Multiple forms of human glycosidases and their role in glycoconjugates degradation, Adv. Clin. Enzymol., 2, 150–157.Google Scholar
  17. 17.
    Wiederschain, G. Ya. (2013) Glycobiology: progress, problems, and perspectives, Biochemistry (Moscow), 178, 679–696.Google Scholar
  18. 18.
    Castagnaro, M., Alroy, J., Ucci, A. A., and Glew, R. H. (1987) Lectin histochemistry and ultrastructure of feline kidneys from six different storage diseases, Virchows Arch., 54, 16–26.Google Scholar
  19. 19.
    Prinetti, A., Prioni, S., Chiricozzi, E., Schuchman, E. H., Chigorno, V., and Somino, S. (2011) Secondary alterations of sphingolipid metabolism in lysosomal storage diseases, Neurochem. Res., 36, 1654–1668.PubMedGoogle Scholar
  20. 20.
    Platt, F. M., and Walkley, S. U. (eds.) (2004) Lysosomal Disorders of the Brain. Recent Advances in Molecular and Cellular Treatment, Oxford University Press.Google Scholar
  21. 21.
    Futerman, A. H., and Zimran, A. (eds.) (2007) Gaucher Disease, CRC, Taylor and Francis Group, Boca Raton, FL, USA.Google Scholar
  22. 22.
    Freeze, H. (2009) Genetic disorders of glycan degradation, in Essentials of Glycobiology (Varki, A., Cummings, R. D., Esko, J. D., Freeze, H., Stanley, P., Bertozzi, C. R., Hart, G. W., and Etzler, M. E., eds.) 2nd Edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 567–583.Google Scholar
  23. 23.
    Mehta, A., and Winchester, B. (eds.) (2012) Lysosomal Storage Disorders: a Practical Guide, Wiley-Blackwell.Google Scholar
  24. 24.
    Folkreth, R. (1999) Abnormalities of developing white matter in lysosomal storage diseases, J. Neuropathol. Exp. Neurol., 58, 887–902.Google Scholar
  25. 25.
    Davies, E. H., Seubarine, K. K., Banks, T., Clark, C. A., and Vellodi, A. (2011) Brain white matter abnormalities in pediatric Gaucher type I and type III using diffusion tensor imaging, J. Inherit. Metab. Dis., 34, 549–553.PubMedGoogle Scholar
  26. 26.
    Kaye, M. E., Alroy, J., Raghavan, S. S., Schwarting, G. A., Adelman, L. S., Runge, V., Gelblum, D., Thalhammer, J. G., and Zuniga, G. (1992) Dysmyelogenesis in animal model GM1 gangliosidosis: radiological, morphological and biochemical studies, Pediatr. Neurol., 8, 255–261.PubMedGoogle Scholar
  27. 27.
    Kroll, R. A., Pagel, M. A., Roman-Goldstein, S., Barkovich, A. J., D’Agostino, A. N., and Neuwelt, E. A. (1995) White matter changes associated with feline GM2 gangliosidosis (Sandhoff disease) correlation of MRI findings with pathologic ultrastructural abnormalities, Am. J. Neuroradiol., 16, 1219–1226.PubMedGoogle Scholar
  28. 28.
    Prietsch, V., Arnold, S., Kraegeloh-Mann, I., Kuehr, J., and Santar, R. (2008) Severe hypomyelination as the leading neuroradiological sign in patients with fucosidosis, Neuropediatrics, 39, 51–54.PubMedGoogle Scholar
  29. 29.
    Morse, R. P., Kleta, R., Alroy, A., and Gahl, W. A. (2005) Novel form of intermediate Salla disease: clinical and neuroimaging features, J. Child Neurol., 20, 814–816.PubMedGoogle Scholar
  30. 30.
    Bava, S., Theilmann, R. J., Sach, M., May, S. J., Frank, L. R., Hesselink, J. R., Vu, D., and Trauner, D. A. (2010) Developmental changes in cerebral white matter microstructure in a disorder of lysosomal storage, Cortex, 46, 206–216.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Wada, R., Tifft, C. J., and Proia, R. L. (2000) Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation, PNAS, 97, 10954–10959.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Jeyakumar, M., Thomas, R., Elliot-Smith, E., Smith, D. A., van der Spoel, A. C., d’Azzo, A., Hugh Perry, V., Butters, T. D., Dwek, R. A., and Platt, F. M. (2003) Central nervous system inflammation is hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis, Brain, 1126, 974–987.Google Scholar
  33. 33.
    Wenger, D. A., Suzuki, K., Suzuki, Y., and Suzuki, K. (2001) Galactosylceramide lipidosis globoid cell leukodystrophy (Krabbe disease), in The Metabolic & Molecular Basis of Inherited Metabolic Disease, 8th Edn. (Scriver, C. R., et al., eds.) McGraw-Hill, NY, pp. 3669–3594.Google Scholar
  34. 34.
    White, A. B., Givorgi, M. I., Lopez-Rosas, A., Can, H., van Breema, R., Thinakaran, G., and Bongarzone, E. R. (2009) Psychosine accumulates in membrane microdomains in the brain of Krabbe patients, disrupting the raft architecture, J. Neurosci., 29, 6068–6077.PubMedGoogle Scholar
  35. 35.
    Kanazawa, T., Nakamura, S., Momi, M., Yameji, T., Takemastsu, H., Yano, H., Sabe, H., Yamamoto, A., Kawasaki, T., and Kozutsumi, Y. (2000) Inhibition of cytokinesis by lipid metabolic psychosine, J. Cell Biol., 149, 943–950.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Giri, S., Khan, M., Nath, N., Singh, I., and Singh, A. K. (2008) The role of AMPK in psychosine mediated effects on oligodendrocytes and astrocytes implication for Krabbe disease, J. Neurochem., 105, 1820–1833.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Giri, S., Jatana, M., Rattan, R., Won, J. S., Singh, I., and Singh, A. K. (2002) Galactosylsphingosine (psychosine)-induced expression of cytokine-mediated nitric oxide synthase via AP-1 and C/EBP. Implications of Krabbe disease, FASEB J., 16, 661–672.PubMedGoogle Scholar
  38. 38.
    Ijichi, K., Brown, G. D., Moore, C. S., Lee, J-P., Winokur, P. N., Pagarigan, R., Snyder, E. Y., Bongarzone, E. R., and Crocker, S. J. (2013) MMP-3 mediated psychosine-induced globoid cell formation: implications for leukodystrophy pathology, Glia, 61, 765–777.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Khan, M., Haq, E., Giri, S., Singh, I., and Singh, A. K. (2005) Peroxisomal participation in psychosine-mediated toxicity implications for Krabbe’s disease, J. Neurosci. Res., 80, 845–854.PubMedGoogle Scholar
  40. 40.
    Kagitani-Shimono, K., Mohri, I., Yagi, T., Tanika, M., and Suzuki, K. (2008) Peripheral neuropathy in the twicher mouse accumulation of extracellular matrix in endoneurium and aberrant expression of ion channels, Acta Neuropathol., 115, 577–587.PubMedGoogle Scholar
  41. 41.
    Jeyakumar, M., Williams, I., Smith, D. A., Cox, T. M., and Platt, F. M. (2009) Critical role of iron in the pathogenesis of the murine gangliosidoses, Neurobiol. Dis., 34, 406–416.PubMedGoogle Scholar
  42. 42.
    Hein, L. K., Duplock, S., Hopwood, J. J., and Fuller, M. (2008) Lipid composition of microdomains is altered in a cell model of Gaucher disease, J. Lipid Res., 49, 1725–1734.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Koike, T., Ishida, G., Taniguchi, M., Higaki, K., Ayaki, Y., Saito, M., Sakakihara, Y., Iwamori, M., and Ohno, K. (1998) Decreased membrane fluidity and unsaturated fatty acids in Niemann-Pick disease type C fibroblasts, Biochim. Biophys. Acta, 1406, 327–335.PubMedGoogle Scholar
  44. 44.
    Bu, B., Li, J., Davies, P., and Vincent, I. (2002) Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in Niemann-Pick C murine model, J. Neurosci., 22, 6515–6525.PubMedGoogle Scholar
  45. 45.
    Byun, K., Kim, J., Hutchison, B., Yang, S. R., Kang, K. S., Cho, M., Hwang, K., Michikawa, M., Jeon, Y. W., Paik, Y. K., and Lee, B. (2006) Alteration of glutamate and GABA transporters in the hippocampus of Niemann-Pick disease type C mouse using proteomic analysis, Proteomics, 6, 1230–1236.PubMedGoogle Scholar
  46. 46.
    Griffin, L. D., Gong, W., Verot, L., and Mellon, S. H. (2004) Niemann-Pick C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone, Nature Med., 10, 704–711.PubMedGoogle Scholar
  47. 47.
    Yu, W., Gong, J-S., Ko, M., Garver, W. S., Yanagisawa, K., and Michikawa, M. (2005) Altered cholesterol metabolism in Niemann-Pick C1 mouse brain affects mitochondrial function, J. Biol. Chem., 280, 11731–11739.PubMedGoogle Scholar
  48. 48.
    Li, H., Repa, J. J., Valasek, M. A., Beltroy, E. P., Turley, S. D., German, D. C., and Dietschy, J. M. (2005) Molecular, anatomical and biochemical events associated with neurodegeneration in mice with Niemann-Pick C disease, J. Neuropathol. Exp. Neurol., 64, 323–333.PubMedGoogle Scholar
  49. 49.
    Fraldi, A., Annunziata, F., Lombardi, A., Kasier, H.-L., Medina, D. L., Spampanat, C., Fedele, A. O., Polischuk, R., Sorrentino, N. C., Simons, K., and Ballabio, A. (2010) Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders, EMBO J., 29, 3607–3620.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Liang, F., Seyrantepe, V., Landry, K., Ahmad, R., Ahmad, A., Stamatos, N. M., and Pshezhetsky, A. V. (2006) Monocytes differentiation up-regulates the expression of lysosomal sialidase, Neu I, and triggers its targeting to plasma membrane via major histocompatibility complex class II positive compartments, J. Biol. Chem., 281, 27526–27538.PubMedGoogle Scholar
  51. 51.
    Pshezhetsky, A. V., and Ashmarina, L. I. (2013) Desialylation of surface receptors as a new dimension in cell signaling, Biochemistry (Moscow), 78, 736–745.Google Scholar
  52. 52.
    Yogalingam, G., Bonten, E. J., van de Vlekker, D., Hu, H., Moshiach, S., Connell, S. A., and d’Azzo, A. (2008) Neuraminidase I is a negative regulator of lysosomal exocytosis, Devel. Cell, 15, 74–86.Google Scholar
  53. 53.
    Keating, D. J., Winter, M. A., Hemsley, K. M., Mackenzie, K. D., Teo, E. H., Hopwood, J. J., Brook, D. A., and Parkinson-Lawrence, E. J. (2012) Exocytosis is impaired in mucopolysaccharidosis III mouse chromaffin cells, Neuroscience, 227, 110–118.PubMedGoogle Scholar
  54. 54.
    Yaghootfan, A., Gieselmann, V., and Eckhardt, M. (2005) Delay of myelin formation in arylsufatase A-deficient mice, Eur. J. Neurosci., 21, 711–720.Google Scholar
  55. 55.
    Dali, C. I., Hanson, L. G., Barton, N. W., Fogh, J., Nair, N., and Lund, A. M. (2010) Brain N-acetylaspartate level correlate with motor function in metachromatic leukodystrophy, Neurology, 75, 1896–1903.Google Scholar
  56. 56.
    Ramakirshnan, H., Hedayati, K. K., Lullmann-Rauch, R., Wessing, C., Fewou, S. N., Maier, H., Goebel, H. H., Gieselmann, V., and Eckhardt, M. (2007) Increase sulfatide synthesis in myelin-forming cells of arylsulfatase A deficient mice causes demyelination and neurological symptoms reminiscent of human metachromatic leukodystrophy, J. Neurosci., 27, 9482–9490.Google Scholar
  57. 57.
    Groeschel, S., Dali, C., Clas, P., Bohringer, J., Duno, M., Krarup, C., Kehrer, C., Wilke, M., and Krageloh-Mann, I. (2012) Cerebral gray and white matter changes and clinical course in metachromatic leukodystrophy, Neurology, 79, 1662–1670.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Colello, R. J., Pott, U., and Schwab, M. E. (1994) The role of oligodendrocytes and myelin on axon maturation in the developing rat retinofugal pathways, J. Neurosci., 14, 2594–2605.PubMedGoogle Scholar
  59. 59.
    Brady, S. T., Stang, E., Kirkpatrick, L. L., et al. (1999) The role of oligodendrocytes and myelin on axonal developing rat retinofugate pathway, J. Neurosci., 19, 7278–7288.PubMedGoogle Scholar
  60. 60.
    Chrast, R., Saher, G., Nave, R.-A., and Verheijen, M. G. H. (2011) Lipid metabolism in myelinated glial cells: lesson from human inherited disorders and mouse models, J. Lipid Res., 52, 419–434.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Uusitalo, A., Tenhunen, K., Heinonen, O., Hiltonen, J. O., Saarma, M., Haltia, M., Jalanko, A., and Peltonen, L. (1999) Toward understanding the neuronal pathogenesis of aspartylgucosaminuria: expression of aspartylglucosaminidase in brain during development, Mol. Genet. Metab., 67, 294–307.PubMedGoogle Scholar
  62. 62.
    Lovell, K. L. (1990) Development of glial and myelin abnormalities in optic nerve and corpus callosum, Glia, 3, 26–32.PubMedGoogle Scholar
  63. 63.
    Patterson, J. S., Jones, M. Z., Lovell, K. L., and Abbitt, B. (1991) Neuropathology of bovine β-mannosidosis, J. Neuropathol. Exp. Neurol., 50, 538–546.PubMedGoogle Scholar
  64. 64.
    Boyer, P. J., Jones, M. Z., Nachreiner, R. F., Refsal, K. R., Common, R. S., Kelley, J., and Lovell, K. L. (1990) Caprine β-mannosidosis. Abnormal thyroid structure and function in lysosomal storage disease, Lab. Invest., 63, 100–106.PubMedGoogle Scholar
  65. 65.
    Prietsch, V., Arnold, S., Kraegeloh-Mann, I., Kuehr, J., and Santar, R. (2008) Severe hypomyelination as the leading neuroradiological sign in patients with fucosidosis, Neuropediatrics, 39, 51–54.PubMedGoogle Scholar
  66. 66.
    Kondagari, G. S., Yang, J., and Taylor, R. M. (2011) Investigation of cerebrocortical and cerebellar pathology in canine fucosidosis and comparison to aged brain, Neurobiol. Dis., 41, 605–613.PubMedGoogle Scholar
  67. 67.
    Yap, T. L., Velayati, A., Sidransky, E., and Lee, J. C. (2013) Membrane-bound α-synuclein interacts with α-glucocerebrosidase and inhibits enzyme activity, Mol. Genet. Metab., 108, 56–64.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Ron, I., Rapaport, D., and Horowitz, M. (2010) Interaction between parkin and mutant glucocerebrosidase variants: a possible link between Parkinson disease and Gaucher disease, Hum. Mol. Genet., 19, 3771–3781.PubMedGoogle Scholar
  69. 69.
    Mazzulli, J. R., Xu, Y-H., Sun, Y., Knight, A. L., McLean, P. J., Caldwell, G. A., Sidransky, E., Grabowski, G. A., and Krainc, D. (2011) Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies, Cell, 146, 37–52.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Hannun, Y. A., and Bell, R. M. (1989) Functions of sphingolipids and sphingolipid breakdown products in cellular regulation, Science, 243, 500–507.PubMedGoogle Scholar
  71. 71.
    Hannun, Y. A. (1996) Functions of ceramide in coordinating cellular response to stress, Science, 274, 1855–1859.PubMedGoogle Scholar
  72. 72.
    Alroy, J., Haskins, M., and Birk, D. E. (1999) Altered corneal stromal matrix organization is associated with mucopolysaccharidosis I, III, and VI, Exp. Eye Res., 68, 523–530.PubMedGoogle Scholar
  73. 73.
    Varcko, R. (1974) Basal lamina scaffold anatomy and significance for maintenance of orderly tissue structure, Am. J. Pathol., 77, 314–344.Google Scholar
  74. 74.
    Varcko, R., and Benditt, E. P. (1974) Manifestation of diabetes mellitus: their possible relationship to underlying cell defect, Am. J. Pathol., 75, 204–223.Google Scholar
  75. 75.
    Hughes, D. A., and Meta, A. B. (2005) Vascular complications of Fabry disease: enzyme replacement and other therapies, Acta Paediatr., 94(Suppl. 447), 28–33.Google Scholar
  76. 76.
    Lee, M. H., Choi, E. N., Jeon, Y. J., and Jung, S-C. (2012) Possible role of transforming growth factor-β1 and vascular growth factor in Fabry disease nephropathy, Int. J. Mol. Med., 30, 1275–1280.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Heltianu, C., Costache, G., Azibi, K., Azibi, K., Poenaru, L., and Simiionescu, M. (2002) Endothelial nitric oxidase synthase gene polymorphisms in Fabry disease, Clin. Genet., 61, 423–429.PubMedGoogle Scholar
  78. 78.
    Shu, L., Park, J. L., Byun, J., Pennathur, S., Kollmeyer, J., and Shayman, J. A. (2009) Decreased nitricoxide bioavailability in a mouse model of Fabry disease, J. Am. Soc. Nephrol., 20, 1975–1985.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Degraba, T., Azhar, S., Dignat-George, F., Brown, E., Boutiere, B., Altarescu, G., Mccarro, R., and Schiffmann, R. (2000) Profile of endothelial and leukocytes activation in Fabry patients, Ann. Neurol., 47, 229–233.PubMedGoogle Scholar
  80. 80.
    Aerts, J. M., Groener, J. E., Donker-Koopman, W. E., Strijland, A., Ottenhoff, R., van Romen, C., Mirzaian, M., Wijburg, A. F., Linthorst, G. E., Vedder, A. C., Rombach, S. M., Cox-Brinkman, J., Somerharju, P., Boot, R. G., Hollak, C. E., Brady, R. O., and Poorhuis, B. J. (2008) Elevated globotriaosylsphingosine is a hallmark of Fabry disease, Proc. Natl. Acad. Sci. USA, 105, 2812–2817.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Park, J. L., Whitesall, S. E., D’Alecy, L. G., Shu, L., and Shayman, J. A. (2008) Galactotriaosylceramide leads to K(Ca)3,1 channel dysfunction: a new insight to endothelial dysfunction in Fabry disease, Clin. Exp. Pharmacol. Physiol., 35, 1156–1163.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Park, S., Kim, J. A., Joo, K. Y., Choi, S., Choi, E. N., Shin, J. A., Han, K. H., Jung, S. C., and Suh, S. H. (2011) Galactotriaosylceramide leads to K(Ca)3,1 channel dysfunction: a new insight to endothelial dysfunction in Fabry disease, Cardiovasc. Res., 89, 290–299.PubMedGoogle Scholar
  83. 83.
    Lucke, T., Hoppner, W., Schmidt, E., Illsinger, S., and Das, A. M. (2004) Fabry disease: reduced activities of respiratory chain enzymes with decreased levels of energy-rich phosphates in fibroblasts, Mol. Genet. Metab., 82, 93–97.PubMedGoogle Scholar
  84. 84.
    Vylet, P., Hulkova, H., Zivna, M., Berna, L., Novak, P., Elleder, M., and Kmoch, S. (2008) Abnormal expression and processing of uromodulin in Fabry disease reflects tubular cell storage alteration and is reversible by enzyme replacement therapy, J. Inherit. Metab. Dis., 31, 508–517.Google Scholar
  85. 85.
    Teitcher, M., Weinerman, S., Whybra, C., Beck, M., Sharon, N., Elstein, D., and Altarscu, G. (2008) Genetic polymorphisms of vitamin D receptor (VDR) in Fabry disease, Genetica, 134, 377–383.PubMedGoogle Scholar
  86. 86.
    Cuervo, A. N., Mann, L., Bonten, E. J., d’Azzo, A., and Dice, J. F. (2003) Cathepsin A regulates chaperone-mediated autophagy through cleavage of lysosomal receptor, EMBO J., 22, 47–59.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Yogalingam, G., Bonten, E. J., van de Vlekker, D., Hu, H., Moshiach, S., Connell, S. A., and d’Azzo, A. (2008) Neuraminidase I is a negative regulator of lysosomal exocytosis, Devel. Cell, 15, 74–86.Google Scholar
  88. 88.
    Arampatzidou, M., Schutte, A., Hansson, G. C., Saftig, P., and Brix, K. (2012) Effect of cathepsins deficiency in intracellular junction proteins, luminal mucus layers, and extra-cellular matrix constituents in mouse colon, Biol. Chem., 393, 1391–1403.PubMedGoogle Scholar
  89. 89.
    Castaneda, J. A., Lim, M. J., Cooper, J. D., and Pierce, D. A. (2008) Immune system regularities in lysosomal disorders, Acta Neuropathol., 115, 159–174.PubMedGoogle Scholar
  90. 90.
    Malm, D., Halvorsen, D. S., Tranebjaerg, L., and Sjursen, H. (2000) Immunodeficiency in alpha-mannosidosis: a matched case-control study on immunoglobulin, complement factors, receptor density, phagocytosis and intracellular killing in leukocytes, Eur. J. Pediatr., 159, 699–703.PubMedGoogle Scholar
  91. 91.
    Balreira, A., Lacerda, L., Sa Miranda, C., and Arosa, F. A. (2005) Evidence for link between phospholipid metabolism and expression of CD1d and MHC-class II: monocytes from Gaucher disease patients as a model, Br. J. Haematol., 129, 667–676.PubMedGoogle Scholar
  92. 92.
    Vellodi, A. (2004) Lysosomal storage disorders, Br. J. Hematol., 124, 413–431.Google Scholar
  93. 93.
    Kacher, Y., and Futerman, A. H. (2008) Impaired IL-10 transcription and release in animal models of Gaucher disease macrophages, Blood Cell Mol. Dis., 43, 134–137.Google Scholar
  94. 94.
    De Fost, M., Out, T. A., de Wilde, F. A., Tjin, E. P., Pals, S. T., van Oers, M. H. J., Boot, R. G., Aerts, J. F. M., Maas, M., von Dahl, S., and Hollak, C. E. (2008) Immunoglobulin and free light chain abnormalities in Gaucher disease type I: data from an adult cohort of 63 patients and review of the literature, Ann. Hematol., 87, 439–449.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Micheva, I., Marinakis, T., Repa, C., Kouraklis-Symeonidis, A., Vlacha, V., Anagnostopoulos, N., Zoumbos, N., and Symeonidis, A. (2006) Dendritic cells in patients with type I Gaucher disease are decreased in number but functionally normal, Blood Cell Mol. Dis., 36, 298–307.Google Scholar
  96. 96.
    Landgren, O., Turesson, I., Gridley, G., and Caporaso, N. E. (2007) Risk of malignant disease among 1525 adult male US veterans with Gaucher disease, Arch. Int. Med., 167, 1189–1194.Google Scholar
  97. 97.
    Martinez, P., Aggio, M., and Rozenfeld, P. (2007) High incidence of autoantibodies in Fabry disease patients, J. Inherit. Metab. Dis., 30, 365–369.PubMedGoogle Scholar
  98. 98.
    Qu, P., Du, H., Wikes, D. S., and Yan, C. (2009) Critical roles of lysosomal acid lipase in T cells development and function, Am. J. Pathol., 174, 944–956.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Yamaguchi, A., Katsuyama, K., Nagahama, K., Takai, T., Aoki, I., and Yamanaka, S. (2004) Possible role of autoantibodies in the pathophysiology of GM2 gangliosidoses, J. Clin. Invest., 113, 200–208.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Koo, I. C., Ohol, Y. M., Wu, P., Morisaki, J. H., Cox, J. S., and Brown, E. J. (2008) Role of lysosomal enzyme β-hexosaminidase in the control of mycobacteria infection, Proc. Natl. Acad. Sci. USA, 105, 710–715.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Galbiati, P., Basso, V., Cantuti, L., Givorgi, M. I., Lopez-Rosas, A., Perez, N., Vasu, C., Cao, H., van Breeman, R., Mondino, A., and Bongarzone, E. R. (2007) Autonomic denervation of lymphoid organs lead to epigenetic immune atrophy of a mouse model of Krabbe disease, J. Neurosci., 27, 13730–13738.PubMedGoogle Scholar
  102. 102.
    Utermohlen, O., Karow, U., Lohler, J., and Kronke, M. (2003) Severe impairment in early host defense against Listeria monocytogenes in mice deficient in sphingomyelinase, J. Immunol., 170, 2521–2628.Google Scholar
  103. 103.
    Ng, C. G., and Griffin, D. F. (2006) Acid sphingomyelinase deficiency increased susceptibility to fetal alpha virus encephalomyelitis, J. Virol., 80, 10989–10999.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Martinez, P., Aggio, M., and Rozenfeld, P. (2007) High incidence of autoantibodies in Fabry disease patients, J. Inherit. Metab. Dis., 30, 365–369.PubMedGoogle Scholar
  105. 105.
    Archer, L. D., Langford-Smith, K. J., Critchley, W. R., Bigger, B. W., and Fildes, J. F. (2013) Characterization of the T cell and dendritic cell repertoire in a marine model of mucopolysaccharidosis I (MPS I), J. Inherit. Metab. Dis., 36, 257–262.PubMedGoogle Scholar
  106. 106.
    Bowden, K. L., Bilbey, N. J., Bilawchuk, L. M., Boadu, E., Sidhu, R., Ory, D. S., Du, H., Chan, T., and Francis, G. A. (2011) Lysosomal acid lipase deficiency impairs regulation of ABCA1 gene and formation of high density lipoproteins in cholesteryl ester storage disease, J. Biol. Chem., 286, 30624–30635.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Holleran, W. M., Ginns, E. I., Menon, G., Grudmann, J. U., Fartasch, M., Elias, P. M., and Sidransky, E. (2000) Epidermal consequence of β-glucocerebroside deficiency: permeability barrier alteration for skin lesions in type 2 Gaucher disease, J. Clin. Invest., 93, 1756–1764.Google Scholar
  108. 108.
    Sideransky, E., Fartasch, M., Lee, R. E., Metaly, L. A., Abeilla, S., Zimran, A., Gao, W., Elias, P. M., Ginns, E., and Holleren, W. M. (1996) Epidermal abnormalities may distinguish type 2 from type 1 and 3 of Gaucher disease, Pediatr. Res., 39, 134–141.Google Scholar
  109. 109.
    Xu, H., Kongmanas, K., Kadunganattil, S., Smith, C. E., Rupar, T., Goto-Inoue, N., Hermo, L., Faull, K. F., and Tanphaichitr, N. (2001) Arylsulfatase A deficiency causes seminolipid accumulation and lysosomal storage in Sertoli cells, J. Lipid Res., 52, 2187–2197.Google Scholar
  110. 110.
    Butler, A., He, X., Gordon, R. E., Wu, H. S., Gat, S., and Schuchman, E. H. (2002) Reproductive pathology and sperm physiology in acid sphingomyelinase-deficient mice, Am. J. Pathol., 161, 1061–1075.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Faggiano, A., Pisani, A., Milone, F., Gaccione, A., Filippella, M., Santoro, A., Vallone, G., Tortora, F., Sabbatini, M., Spinelli, L., Lombardi, G., Cianciaruso, B., and Colao, A. (2006) Endocrine dysfunction in patients with Fabry disease, J. Clin. Endocrinol. Metab., 91, 4319–4325.PubMedGoogle Scholar
  112. 112.
    Papaxanthos-Roche, A., Deminiere, C., Bauduer, F., Hocke, C., Mayer, G., and Lacombe, D. (2007) Azoospermia as a new feature of Fabry disease, Fertil. Steril., 88, e15–18.PubMedGoogle Scholar
  113. 113.
    Besouw, M. T., Kremer, J. A. M., Janssen, M. C. H., and Levtchenko, E. N. (2010) Fertility status in male cystinosis patients treated with cystamine, Fertil. Steril., 93, 1880–1883.PubMedGoogle Scholar
  114. 114.
    Veeramachaneni, D. N. R., Smith, M. O., and Ellinwood, N. M. (1998) Deficiency of fucosidase results in acrosomal dysgenesis and impaired sperm maturation, J. Adrenol., 19, 444–449.Google Scholar
  115. 115.
    Venditti, J. J., Donigan, K. A., and Bean, B. S. (2007) Crypticity and functional distribution of the membrane associated α-L-fucosidase of human sperm, Mol. Reprod. Dev., 74, 758–765.PubMedGoogle Scholar
  116. 116.
    Raben, N., Wong, A., Ralston, E., and Myerowitz, R. (2012) Autophagy and mitochondria in Pompe disease: nothing is so new as what as long be forgotten, Am. J. Med. Genet., 160C, 13–21.PubMedGoogle Scholar
  117. 117.
    De Pablo-Latorre, R., Saide, A., Polishhuck, E. V., Nusco, E., Fraldi, A., and Ballabio, A. (2012) Impaired parkin-mediated mitochondrial targeting differentially contributes to tissue pathology in lysosomal storage diseases, Hum. Mol. Genet., 21, 1770–1778.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Thomas, G. H. (2001) in The Metabolic & Molecular Bases of Inherited Disease, 8th Edn. (Scriver, C. R., Beaudet, A. L., Sly, W. S., Valle, D., Childs, B., Kinzler, K. W., and Vogelstein, B., eds.) McGraw-Hill, NY, pp. 3507–3533.Google Scholar
  119. 119.
    Nanto-Salonen, K., Larjavam, H., Saamanen, A.-M., Heinio, J., Penttnen, R., Pelliniemi, L. J., and Tammi, M. (1987) Normal collagen fibrils in aspartyl glucosaminuria. Altered dermal ultrastructural in glycoprotein storage disorder, Connect. Tissue Res., 16, 367–376.PubMedGoogle Scholar
  120. 120.
    Aula, P., and Gahl, W. A. (2001) in The Metabolic & Molecular Bases of Inherited Disease, 8 Edn. (Scriver, C. R., Beaudet, A. L., Sly, W. S., Valle, D., Childs, B., Kinzler, K. W., and Vogelstein, B., eds.) McGraw-Hill, NY, pp. 5109–5120.Google Scholar
  121. 121.
    Nanto-Salonen, K., Pelliniemi, L. J., Auito, S., Kivimaki, T. M., Rampola, J., and Penttinen, R. (1984) Normal collagen fibrils in aspartylglucosaminuria. Altered dermal ultrastructural in glycoprotein storage disorder, Lab. Invest., 51, 464–468.PubMedGoogle Scholar
  122. 122.
    Maatta, A., Jarvelainen, H. T., Nelimarkks, L. O., and Penttinen, R. P. (1994) Fibroblasts expression of collagen and proteoglycan is altered in aspartylglucosaminuria, a lysosomal storage disease, Biochim. Biophys. Acta, 1225, 264–270.PubMedGoogle Scholar
  123. 123.
    Nanto-Salonen, K., Halme, T., Penttinen, R., Langevelde, F. V., Dis, R. D., and Alfthan, G. (1985) Disturbed metabolism of copper and zinc in aspartylglucosaminuria: possible involvement with connective tissue, J. Inherit. Metab. Dis., 8, 212–218.PubMedGoogle Scholar
  124. 124.
    Neufeld, E. F., and Munzer, J. (2001) in The Metabolic & Molecular Bases of Inherited Disease, 8th Edn. (Scriver, C. R., Beaudet, A. L., Sly, W. S., Valle, D., Childs, B., Kinzler, K. W., and Vogelstein, B., eds.) McGraw-Hill, NY, pp. 3421–3452.Google Scholar
  125. 125.
    Trowbridge, J. M., and Gallo, R. I. (2002) Dermatan sulfate: new functions from old glycosaminoglycans, Glycobiology, 12, 117R–125R.PubMedGoogle Scholar
  126. 126.
    Bosman, F. T., and Stamenkovic, I. (2003) Functional structure and composition of the extracellular matrix, J. Pathol., 200, 423–428.PubMedGoogle Scholar
  127. 127.
    Bernfield, M., Gotte, M., Park, P. W., Reizes, O., Fitzgeraid, M. L., Lincecum, J., and Zako, M. (1999) Functions of cell surface heparin sulfate proteoglycans, Annu. Rev. Biochem., 68, 726–777.Google Scholar
  128. 128.
    Vynios, D. H., Papageorgakopoulou, N., Sazakli, H., and Tsiganos, C. P. (2001) Interactions of cartilage proteoglycans with collagen are determined by their structures, Biochimie, 83, 899–906.PubMedGoogle Scholar
  129. 129.
    Klintworth, G. K. (1995) in Pathobiology of Ocular Diseases: a Dynamic Approach (Graner, A., and Klintworth, G. K., eds.) 2nd Edn., Marcel Dekker Inc, NY, pp. 855–892.Google Scholar
  130. 130.
    Suzuki, K., Saito, J., Yanai, R., Yamada, N., Chikama, T-I., Seki, K., and Nishida, T. (2003) Cell-matrix and cell-cell interaction during corneal epithelial wound healing, Prog. Retinal Eye Res., 22, 113–133.Google Scholar
  131. 131.
    Alroy, J., Haskins, M., and Birk, D. E. (1999) Altered corneal stromal matrix organization is associated with mucopolysaccharidosis I, III, and VI, Exp. Eye Res., 68, 523–530.PubMedGoogle Scholar
  132. 132.
    Young, R. D., Liskova, P., Pinali, C., Palka, B. P., Palos, M., Jirsova, K., Hrdlickova, E., Tesarova, M., Elleder, M., Zeman, J., Meek, K. M., Knupp, C., and Quantock, A. J. (2001) Large proteoglycan complexes and disturbed collagen architecture is in corneal extracellular matrix of mucopolysaccharidosis type VII (Sly syndrome), Invest. Ophthalmol. Vis. Sci., 52, 6720–6728.Google Scholar
  133. 133.
    Hassell, J. R., and Birk, D. E. (2010) The molecular basis of corneal transparency, Exp. Eye Res., 91, 326–335.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Santra, M., Reed, C. C., and Iozzo, R. V. (2002) Decorin binds to a narrow region of the epidermal growth factor (EGF) receptor, partially overlapping but distinct EGF-binding epitope, J. Biol. Chem., 277, 35671–35681.PubMedGoogle Scholar
  135. 135.
    Mura, C., Villa, O., Haskins, M., and Alroy, J. (2006) Expression of annexin and decorin in corneas of cats with mucopolysaccharidosis VI, Virchows Arch., 448, 681A.Google Scholar
  136. 136.
    Bredrup, C., Stang, E., Bruland, O., Palka, B. P., Young, R. D., Haavik, J., Knappskog, P. M., and Rodahl, E. (2010) Decorin accumulation contributes to stromal opacities in congenital corneal dystrophy, Invest. Ophthalmol. Vis. Sci., 51, 5578–5582.PubMedGoogle Scholar
  137. 137.
    Villa, O., Alroy, J., and Haskins, M. (2005) Lens-like expression of crystallins in the corneas of cats with mucopolysaccharidosis I and VI, Lab. Invest., 85, 301A.Google Scholar
  138. 138.
    Andley, U. P. (2007) Crystallins in the eye: function and pathology, Progr. Retina Eye Res., 26, 78–98.Google Scholar
  139. 139.
    Ma, X., Tittiger, M., Kuntsen, R. H., Kovacs, A., Schaller, L., Mechan, R. P., and Ponder, K. P. (2008) Upregulation of elastase proteins results in aortic dilatation in mucopolysaccharidosis I mice, Mol. Genet. Metab., 94, 298–304.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Arampatzidou, M., Schutte, A., Hansson, G. C., Saftig P., and Brix, K. (2012) Effect of cathepsins deficiency in intracellular junction proteins, luminal mucus layers, and extracellular matrix constituents in mouse colon, Biol. Chem., 393, 1391–1403.PubMedGoogle Scholar
  141. 141.
    Gowen, M., Lanzer, F., Dodds, R., Kapadia, R., Field, J., Tavaria, M., Bertocello, I., Drake, F., Zavarselk, S., Tellis, I., Hertzog, P., Debouck, C., and Kola, I. (1999) Cathepsin K knockout mice develop osteopetrosis due to a deficient in matrix degradation but not demineralization, J. Bone Miner. Res., 14, 1654–1663.PubMedGoogle Scholar
  142. 142.
    Metcalf, J. A., Linders, B., Wu, S., Bigg, P., O’Donnell, P., Sleeper, M. M., Whyte, M. P., Haskins, M., and Ponder, K. P. (2010) Mechanism of shortened bones in mucopolysaccharidosis VII, Mol. Genet. Metab., 99, 396–704.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Wilson, S., Hashamiyan, S., Clarke, L., Saftig, P., Mort, J., Dejica, V. M., and Bromme, D. (2009) Glycosaminoglycan-mediated loss of cathepsin K collagenous activity in MPS I contributes to osteoclast and growth plate abnormalities, Am. J. Pathol., 175, 2053–2062.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Bank, R. A., Groener, J. E. M., van Gemund, J. J., Maaswinkel, P. D., Hoeben, K. A., Schut, H. A., and Everts, V. (2009) Deficiency of N-acetylgalactosmine-6-sulfate sulfatase in collage perturbation in cartilage of Morquio syndrome A patients, Mol. Genet. Metab., 97, 196–201.PubMedGoogle Scholar
  145. 145.
    Suzuki, Y., Oshima, A., and Nanba, E. (2001) GM1-gangliosidase deficiency (GM1-gangliosidosis): GM1-gangliosidosis and Morquio B disease, in The Metabolic & Molecular Bases of Inherited Diseases, 8 Edn. (Scriver, C. R., Beaudet, A. L., Sly, W. S., Valle, D., Childs, B., Kinzler, K. W., and Vogelstein, B., eds.) McGraw-Hill, NY, pp. 3775–3809.Google Scholar
  146. 146.
    Alroy, J., Knowles, K., Schelling, S. H., Kaye, E. M., and Rosenberg, A. E. (1995) Retarded bone formation in GM1-gangliosidosis: a study of infantile form and comparison with canine model, Virchows Arch., 426, 141–148.PubMedGoogle Scholar
  147. 147.
    Metcalf, J. A., Zhang, Y., Hilton, M. J., Long, F., and Ponder, K. P. (2009) Upregulation of elastase activity in aorta in mucopolysaccharidosis I and VII dogs may be due to increased cytokine expression, Mol. Genet. Metab., 97, 202–211.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Smith, L. J., Baldo, G., Wu, S., Liu, Y., Whyte, M. P., Giugliani, R., Elliott, D. M., Haskin, M. E., and Ponder, K. P. (2012) Pathogenesis of lumbar spine disease in mucopolysaccharidosis VII, Mol. Genet. Metab., 107, 153–160.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Smith, L. J., Martinm, J. T., Szezczesny, S. E., Ponder, K. P., Haskin, M. E., and Eliot, D. M. (2010) Pathogenesis of lumbar spine disease in mucopolysaccharidosis VII, J. Orthopaed. Res., 28, 616–622.Google Scholar
  150. 150.
    Castaneda, J. A., Lim, M. J., Cooper, J. D., and Pierce, D. A. (2008) Immune system regularities in lysosomal disorders, Acta Neuropathol., 115, 159–174.PubMedGoogle Scholar
  151. 151.
    Shah, J. S., Hughes, D. A., Tayebjee, M. H., MacFadyen, R. J., Metha, A. B., and Elliot, P. M. (2007) Extracellular matrix turn over and disease severity in Anderson-Fabry disease, J. Inherit. Metab. Dis., 30, 88–95.PubMedGoogle Scholar
  152. 152.
    Malvagia, S., Morrone, A., Caciotti, A., Bardelli, T., d’Azzo, A., Ancora, G., Zammarchi, E., and Donati, N. A. (2004) New mutation in the PPBG lead to loss of PPCA protein which affects the level of β-galactosidase/neuraminidase complex and EBP-receptor, Mol. Genet. Metab., 82, 48–55.PubMedGoogle Scholar
  153. 153.
    Hinek, A., Pshezhetsky, A. V., von Itzstein, M., and Starcher, B. (2006) Lysosomal sialidase (neuraminidase-1) is targeted the cell surface in a multiprotein complex that facilitates elastic fiber assembly, J. Biol. Chem., 281, 3698–3710.PubMedGoogle Scholar
  154. 154.
    Avila, J. A., and Convit, J. (1975) Inhibition of leucocytic lysosomal enzymes by glycosaminoglycans in vitro, Biochem. J., 152, 57–64.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Alroy, J., Pfannl, R., and Ucci, A. A. (2013) in Diagnostic Electron Microscopy: a Practical Guide to Interpretation and Technique (Stirling, J. W., Curry, A., and Eyden, B., eds.) John Wiley & Sons Ltd, pp. 237–267.Google Scholar
  156. 156.
    Lloyd-Evans, E., and Platt, F. M. (2011) Lysosomal Ca2+ homeostasis: role in pathogenesis of lysosomal storage diseases, Cell Calcium, 50, 200–205.PubMedGoogle Scholar
  157. 157.
    Ginzburg, L., and Futerman, A. H. (2005) Defective calcium homeostasis in the cerebellum of mouse model of Niemann-Pick A disease, J. Neurochem., 95, 1619–1628.PubMedGoogle Scholar
  158. 158.
    Lloyd-Evans, E., Pelled, D., Riebeling, C., Bodennec, J., D’Morgan, A., Waller, H., Schiffmann, R., and Futerman, A. H. (2003) Glycosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms, J. Biol. Chem., 278, 23594–23599.PubMedGoogle Scholar
  159. 159.
    Kiselyov, K., Yamaguchi, S., Lyons, C. W., and Muallem, S. (2010) Aberrant Ca2+ handling in lysosomal storage disorders, Cell Calcium, 7, 103–111.Google Scholar
  160. 160.
    Jolly, R. D., Brown, S., Das, A. M., and Walkley, S. U. (2002) Mitochondrial dysfunction in the neuronal ceroid lipofuscinosis (Batten disease), Neurochem. Int., 40, 565–571.PubMedGoogle Scholar
  161. 161.
    Jenning, J. J., Jr., Zu, J-H., Rbaibi, Y., Lao, X., Chu, C. T., and Kislov, K. (2006) Mitochondrial aberrations in mucolipidosis type IV, J. Biol. Chem., 281, 39041–39050.Google Scholar
  162. 162.
    Zeevi, D. A., Frumkin, A., and Bach, G. (2007) TRPML and lysosomal function, Biochim. Biophys. Acta, 1772, 851–858.PubMedGoogle Scholar
  163. 163.
    Ginzburg, L., Li, S-C., Li, Y-T., and Futerman, A. H. (2008) An exposed carbonyl group in sialic acid is essential for gangliosides to inhibit calcium uptake via sarco/endoplasmic reticulum Ca2+-ATPase: relevance to gangliosidosis, J. Neurochem., 104, 140–146.PubMedGoogle Scholar
  164. 164.
    Koening, M. L., Jope, R. S., Baker, H. J., and Lally, K. M. (1987) Reduced Ca2+ flux synaptosomes from cats with GM1 gangliosidosis, Brain Res., 424, 169–176.Google Scholar
  165. 165.
    Mu, T-W., Fowler, D. M., and Kelly, J. W. (2008) Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis, PLoS Biol., 6, e26.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Lieberman, A. P., Puertollano, R., Raben, R., Slaugenhaupt, S., Walkley, S. U., and Ballabio, A. (2012) Autophagy in lysosomal storage disorders, Autophagy, 8, 719–730.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Zhang, L., Sheng, R., and Qin, Z. (2009) The lysosome and neurodegenerative diseases, Acta Biochim. Biophys. Sin., 41, 437–445.PubMedGoogle Scholar
  168. 168.
    Wiederschain, G. Ya. (1977) Glycosidases in normal cell and in hereditary disorders in degradation of carbohydrate-containing compounds, Usp. Biol. Khim., 18, 185–210.Google Scholar
  169. 169.
    Wiederschain, G. Ya. (1980) Biochemical Basis of Glycosidoses [in Russian], Meditsina, Moscow.Google Scholar
  170. 170.
    Wiederschain, G. Ya. (1986) Aspects of glycolipid metabolism in normal state and glycolipidoses, Adv. Biol. Chem. (Moscow), 27, 117–135.Google Scholar
  171. 171.
    Beyer, E. M., Ivleva, T. S., Artykova, G. T., and Wiederschain, G. Ya. (1995) Change of isoforms’ spectra of α-L-fucosidase from human skin fibroblasts in intracellular storage of nonhydrolyzable substances, Biochim. Biophys. Acta, 1270, 7–11.PubMedGoogle Scholar
  172. 172.
    Ivleva, T. S., and Wiederschain, G. Ya. (1994) Reversible rearrangement of vimentin-type intermediate filaments in cultured human skin fibroblasts from patients with lysosomal storage diseases, Cell Biol. Int., 18, 647–653.Google Scholar
  173. 173.
    Beyer, E. M., Ivleva, T. S., Artykova, G. T., and Wiederschain, G. Ya. (1993) Comparative studies of intracellular activity, secretion and multiple forms spectra of human skin fibroblast α-L-fucosidase in the normal and after sucrose load, Biochem. Mol. Biol. Int., 30, 367–375.PubMedGoogle Scholar
  174. 174.
    Futerman, A. H., and van Meer, G. (2004) The cell biology of lysosomal storage disorders, Nat. Rev. Mol. Cell Biol., 5, 554–565.PubMedGoogle Scholar
  175. 175.
    Parkinson-Lawrence, E.-L., Shandala, T., Prodoehl, M., Plew, R., Borlace, G., and Brooks, D. (2010) Lysosomal storage disease: revealing lysosomal function and physiology, Physiology, 25, 102–115.PubMedGoogle Scholar
  176. 176.
    Hopwood, J., Bate, G., and Kirkpatrick, P. (2006) Galsulfase, Nat. Rev. Drug Disc., 5, 101–102.Google Scholar
  177. 177.
    McGrath, B. M., and Walsh, G. (eds.) (2006) Directory of Therapeutic Enzymes, CRC Press, Taylor and Francis Group, Boca Raton-London-New York-Washington.Google Scholar
  178. 178.
    Townsend, R. R., and Hotchkiss, A. T., Jr. (eds.) (1997) Techniques in Glycobiology, Marcel Dekker, New York.Google Scholar
  179. 179.
    Hounsell, E. (ed.) (1998) Glycoanalysis Protocols, 2nd Edn., Humana Press, Totowa, NJ, USA.Google Scholar
  180. 180.
    Brockhausen, I. (ed.) (2006) Glycobiology Protocols, Humana Press, Totowa, NJ, USA.Google Scholar
  181. 181.
    Packer, N. H., and Karlsson, N. G. (eds.) (2009) Glycomics. Methods and Protocols, Humana Press, Springer Science, New York, USA.Google Scholar
  182. 182.
    Yuriev, E., and Ramsland, P. A. (eds.) (2013) Structural Glycobiology, CRC Press, Taylor and Frances Group, Boca Raton, FL, USA.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Department of PathologyTufts University School of Medicine, Tufts Medical CenterBostonUSA
  2. 2.Laboratory of MetabolismTufts Medical CenterBostonUSA
  3. 3.Boston CollegeDepartment of BiologyChestnut HillUSA

Personalised recommendations