Biochemistry (Moscow)

, Volume 79, Issue 7, pp 608–618 | Cite as

Nuclear matrix and structural and functional compartmentalization of the eucaryotic cell nucleus

  • S. V. RazinEmail author
  • V. V. Borunova
  • O. V. Iarovaia
  • Y. S. Vassetzky


Becoming popular at the end of the 20th century, the concept of the nuclear matrix implies the existence of a nuclear skeleton that organizes functional elements in the cell nucleus. This review presents a critical analysis of the results obtained in the study of nuclear matrix in the light of current views on the organization of the cell nucleus. Numerous studies of nuclear matrix have failed to provide evidence of the existence of such a structure. Moreover, the existence of a filamentous structure that supports the nuclear compartmentalization appears to be unnecessary, since this function is performed by the folded genome itself.

Key words

nuclear matrix chromatin functional compartmentalization of cell nucleus architecture of interphase chromosomes interchromatin domain DNA loops 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zbarsky, I. B., and Debov, S. S. (1949) On the proteins of the cell nuclei, Proc. USSR Acad. Sci., 62, 795–798.Google Scholar
  2. 2.
    Dundr, M., and Misteli, T. (2001) Functional architecture in the cell nucleus, Biochem. J., 356, 297–310.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Misteli, T. (2007) Beyond the sequence: cellular organization of genome function, Cell, 128, 787–800.PubMedGoogle Scholar
  4. 4.
    Geyer, P. K., Vitalini, M. W., and Wallrath, L. L. (2011) Nuclear organization: taking a position on gene expression, Curr. Opin. Cell Biol., 23, 354–359.PubMedGoogle Scholar
  5. 5.
    Matera, A. G., Izaguire-Sierra, M., Praveen, K., and Rajendra, T. K. (2009) Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly, Dev. Cell, 17, 639–647.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Carter, D. R., Eskiw, C., and Cook, P. R. (2008) Transcription factories, Biochem. Soc. Trans., 36, 585–589.PubMedGoogle Scholar
  7. 7.
    Sutherland, H., and Bickmore, W. A. (2009) Transcription factories: gene expression in unions, Nat. Rev. Genet., 10, 457–466.PubMedGoogle Scholar
  8. 8.
    Hozak, P., and Cook, P. R. (1994) Replication factories, Trends Cell Biol., 4, 48–52.PubMedGoogle Scholar
  9. 9.
    Narayan, K. S., Steele, W. J., Smetana, K., and Busch, H. (1967) Ultrastructural aspects of the ribonucleoprotein net-work in nuclei of Walker tumor and rat liver, Exp. Cell Res., 46, 65–77.PubMedGoogle Scholar
  10. 10.
    Smetana, K., Unuma, T., and Busch, H. (1968) Ultrastructural studies on nucleic acids of nucleolar granular components in Novikoff hepatoma cells, Exp. Cell Res., 51, 105–122.PubMedGoogle Scholar
  11. 11.
    Zbarsky, I. B., and Georgiev, G. P. (1959) Cytological characteristics of protein and nucleoprotein fractions of cell nuclei, Biochim. Biophys. Acta, 32, 301–302.PubMedGoogle Scholar
  12. 12.
    Georgiev, G. P., and Chentsov, I. S. (1963) On ultrastructure of the nucleus on the basis of electron microscopy of isolated nuclei subjected to salt extracts, Biofizika, 8, 50–57.PubMedGoogle Scholar
  13. 13.
    Berezney, R., and Coffey, D. S. (1974) Identification of a nuclear protein matrix, Biochem. Biophys. Res. Commun., 60, 1410–1417.PubMedGoogle Scholar
  14. 14.
    Berezney, R., and Coffey, D. S. (1975) Nuclear protein matrix: association with newly synthesized DNA, Science, 189, 291–292.PubMedGoogle Scholar
  15. 15.
    Berezney, R., and Coffey, D. S. (1977) Nuclear matrix: isolation and characterization of a framework structure from rat liver nuclei, J. Cell. Biol., 73, 616–637.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Razin, S. V., and Yarovaya, O. V. (1985) Initiated complexes of RNA polymerase II are concentrated in the nuclear skeleton associated DNA, Exp. Cell Res., 158, 273–275.PubMedGoogle Scholar
  17. 17.
    Jackson, D. A., McCready, S. J., and Cook, P. R. (1981) RNA is synthesized at the nuclear cage, Nature, 292, 552–555.PubMedGoogle Scholar
  18. 18.
    Dijkwel, P. A., Wenink, P. W., and Poddighe, J. (1986) Permanent attachment of replication origins to the nuclear matrix in BHK-cells, Nucleic Acids Res., 14, 3241–3249.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Van der Velden, H. M. V., and Wanka, F. (1987) The nuclear matrix — its role in the spatial organization and replication of eukaryotic DNA, Mol. Biol. Rep., 12, 69–77.PubMedGoogle Scholar
  20. 20.
    Berezney, R., Mortillaro, M. J., Ma, H., Wei, X., and Samarabandu, J. (1995) The nuclear matrix: a structural milieu for genomic function, Int. Rev. Cytol., 162A, 1–65.PubMedGoogle Scholar
  21. 21.
    Jackson, D. A., and Cook, P. R. (1995) The structural basis of nuclear function, Int. Rev. Cytol., 162A, 125–149.PubMedGoogle Scholar
  22. 22.
    Xing, Y. G., and Lawrence, J. B. (1991) Preservation of specific RNA distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation, J. Cell Biol., 112, 1055–1063.PubMedGoogle Scholar
  23. 23.
    Stein, G. S., van Wijnen, A. J., Stein, J. L., Lian, J. B., Pockwinse, S., and McNeil, S. (1998) Interrelationships of nuclear structure and transcriptional control: functional consequences of being in the right place at the right time, J. Cell Biochem., 70, 200–212.PubMedGoogle Scholar
  24. 24.
    Hancock, R. (2004) Internal organization of the nucleus: assembly of compartments by macromolecular crowding and the nuclear matrix model, Biol. Cell, 96, 595–601.PubMedGoogle Scholar
  25. 25.
    Cook, P. R., Brazell, I. A., and Jost, E. (1976) Characterization of nuclear structures containing superhelical DNA, J. Cell. Sci., 22, 303–324.PubMedGoogle Scholar
  26. 26.
    Benyajati, C., and Worcel, A. (1976) Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster, Cell, 9, 393–407.PubMedGoogle Scholar
  27. 27.
    Razin, S. V., Gromova, I. I., and Iarovaia, O. V. (1995) Specificity and functional significance of DNA interaction with the nuclear matrix: new approaches to clarify the old questions, Int. Rev. Cytol., 162B, 405–448.PubMedGoogle Scholar
  28. 28.
    Paulson, J. R., and Laemmli, U. K. (1977) The structure of histone-depleted metaphase chromosomes, Cell, 12, 817–828.PubMedGoogle Scholar
  29. 29.
    Razin, S. V., Mantieva, V. L., and Georgiev, G. P. (1979) The similarity of DNA sequences remaining bound to scaffold upon nuclease treatment of interphase nuclei and metaphase chromosomes, Nucleic Acids Res., 7, 1713–1735.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Georgiev, G. P., Bakayev, V. V., Nedospasov, S. A., Razin, S. V., and Mantieva, V. L. (1981) Studies on structure and function of chromatin, Mol. Cell Biochem., 40, 29–48.PubMedGoogle Scholar
  31. 31.
    Berezney, R. (1980) Fractionation of the nuclear matrix. I. Partial separation into matrix protein fibrils and a residual ribonucleoprotein fraction, J. Cell Biol., 85, 641–650.PubMedGoogle Scholar
  32. 32.
    Long, B. H., Huang, C. Y., and Pogo, A. O. (1979) Isolation and characterization of the nuclear matrix in Friend erythroleukemia cells: chromatin and hnRNA interactions with the nuclear matrix, Cell, 18, 1079–1090.PubMedGoogle Scholar
  33. 33.
    Verheijen, R., van Venrooij, W., and Ramaekers, F. (1988) The nuclear matrix: structure and composition, J. Cell Sci., 90(Pt. 1), 11–36.PubMedGoogle Scholar
  34. 34.
    Kaufmann, S. H., Coffey, D. S., and Shaper, J. H. (1981) Considerations in the isolation of rat liver nuclear matrix, nuclear envelope, and pore complex lamina, Exp. Cell Res., 132, 105–123.PubMedGoogle Scholar
  35. 35.
    Rzeszowska-Wolny, J., Razin, S., Puvion, E., Moreau, J., and Scherrer, K. (1988) Isolation and characterization of stable nuclear matrix preparations and associated DNA from avian erythroblasts, Biol. Cell, 64, 13–22.PubMedGoogle Scholar
  36. 36.
    Neri, L. M., Bortul, R., Zweyer, M., Tabellini, G., Borgatti, P., Marchisio, M., Bareggi, R., Capitani, S., and Martelli, A. M. (1999) Influence of different metal ions on the ultrastructure, biochemical properties, and protein localization of the K562 cell nuclear matrix, J. Cell. Biochem., 73, 342–354.PubMedGoogle Scholar
  37. 37.
    Martelli, A. M., Falcieri, E., Gobbi, P., Manzoli, L., Gilmour, R. S., and Cocco, L. (1991) Heat-induced stabilization of the nuclear matrix: a morphological and biochemical analysis in murine erythroleukemia cells, Exp. Cell Res., 196, 216–225.PubMedGoogle Scholar
  38. 38.
    Martelli, A. M., Manzoli, L., Rubbini, S., Billi, A. M., Bareggi, R., and Cocco, L. (1995) The protein composition of Friend cell nuclear matrix stabilized by various treatments. Different recovery of nucleolar proteins B23 and C23 and nuclear lamins, Biol. Cell, 83, 15–22.PubMedGoogle Scholar
  39. 39.
    Verheijen, R., Kuijpers, H., Vooijs, P., van Venrooij, W., and Ramaekers, F. (1986) Distribution of the 70K U1 RNA-associated protein during interphase and mitosis. Correlation with other U RNP particles and proteins of the nuclear matrix, J. Cell Sci., 86, 173–190.PubMedGoogle Scholar
  40. 40.
    Fackelmayer, F. O., Dahm, K., Renz, A., Ramsperger, U., and Richter, A. (1994) Nucleic-acid-binding properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA and RNA in vivo and in vitro, Eur. J. Biochem., 221, 749–757.PubMedGoogle Scholar
  41. 41.
    Nakayasu, H., and Berezney, R. (1991) Nuclear matrins: identification of the major nuclear matrix proteins, Proc. Natl. Acad. Sci. USA, 88, 10312–10316.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Zeitz, M. J., Malyavantham, K. S., Seifert, B., and Berezney, R. (2009) Matrin 3: chromosomal distribution and protein interactions, J. Cell Biochem., 108, 125–133.PubMedGoogle Scholar
  43. 43.
    Nakayasu, H., and Ueda, K. (1983) Association of actin with the nuclear matrix from bovine lymphocytes, Exp. Cell Res., 143, 55–62.PubMedGoogle Scholar
  44. 44.
    Valkov, N. I., Ivanova, M. I., Uscheva, A. A., and Krachmarov, C. P. (1989) Association of actin with DNA and nuclear matrix from Guerin ascites tumor cells, Mol. Cell. Biochem., 87, 47–56.PubMedGoogle Scholar
  45. 45.
    Zeng, C., He, D., and Brinkley, B. R. (1994) Localization of NuMA protein isoforms in the nuclear matrix of mammalian cells, Cell Motil. Cytoskel., 29, 167–176.Google Scholar
  46. 46.
    Mancini, M. A., He, D., Ouspenski, I. I., and Brinkley, B. R. (1996) Dynamic continuity of nuclear and mitotic matrix proteins in the cell cycle, J. Cell. Biochem., 62, 158–164.PubMedGoogle Scholar
  47. 47.
    Harborth, J., and Osborn, M. (1999) Does NuMA have a scaffold function in the interphase nucleus, Crit. Rev. Eukaryot. Gene Expr., 9, 319–328.PubMedGoogle Scholar
  48. 48.
    Berrios, M., Osheroff, N., and Fischer, P. A. (1985) In situ localization of DNA topoisomerase II, a major polypeptide component of the Drosophila nuclear matrix fraction, Proc. Natl. Acad. Sci. USA, 82, 4142–4146.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Feister, H. A., Onyia, J. E., Miles, R. R., Yang, X., Galvin, R., Hock, J. M., and Bidwell, J. P. (2000) The expression of the nuclear matrix proteins NuMA, topoisomerase II-alpha, and -beta in bone and osseous cell culture: regulation by parathyroid hormone, Bone, 26, 227–234.PubMedGoogle Scholar
  50. 50.
    Vassetzky, Y. S., Hair, A., and Razin, S. V. (2000) Rearrangement of chromatin domains in cancer and development, J. Cell. Biochem. Suppl., 35(Suppl.), 54–60.PubMedGoogle Scholar
  51. 51.
    Kaufmann, S. H., and Shaper, J. H. (1991) Association of topoisomerase II with the hepatoma cell nuclear matrix: the role of intermolecular disulfide bond formation, Exp. Cell Res., 192, 511–523.PubMedGoogle Scholar
  52. 52.
    Valkov, N. I., Gump, J. L., and Sullivan, D. M. (1997) Quantitative immunofluorescence and immunoelectron microscopy of the topoisomerase II alpha associated with nuclear matrices from wild-type and drug-resistant Chinese hamster ovary cell lines, J. Cell. Biochem., 67, 112–130.PubMedGoogle Scholar
  53. 53.
    Jackson, D. A., and Cook, P. R. (1988) Visualization of a filamentous nucleoskeleton with a 23 nm axial repeat, EMBO J., 7, 3667–3677.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Gajkowska, B., Cholewinski, M., and Gniadecki, R. (2000) Structure of cytomatrix and nuclear matrix revealed by embedment-free electron microscopy, Acta Neurobiol. Exp. (Wars.), 60, 147–158.Google Scholar
  55. 55.
    Galande, S., Purbey, P. K., Notani, D., and Kumar, P. P. (2007) The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1, Curr. Opin. Genet. Dev., 17, 408–414.PubMedGoogle Scholar
  56. 56.
    Hancock, R. (2000) A new look at the nuclear matrix, Chromosoma, 109, 219–225.PubMedGoogle Scholar
  57. 57.
    Pederson, T. (1998) Thinking about a nuclear matrix, J. Mol. Biol., 277, 147–159.PubMedGoogle Scholar
  58. 58.
    Pederson, T. (2000) Half a century of the nuclear matrix, Mol. Biol. Cell, 11, 799–805.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Vassetzky, Y. S., Dang, Q., Benedetti, P., and Gasser, S. M. (1994) Topoisomerase II forms multimers in vitro: effects of metals, beta-glycerophosphate, and phosphorylation of its C-terminal domain, Mol. Cell. Biol., 14, 6962–6974.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Tan, J. H., Wooley, J. C., and LeStourgeon, W. M. (2000) Nuclear matrix-like filaments and fibrogranular complexes form through the rearrangement of specific nuclear ribonucleoproteins, Mol. Biol. Cell, 11, 1547–1554.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Gueth-Hallonet, C., Wang, J., Harborth, J., Weber, K., and Osborn, M. (1998) Induction of a regular nuclear lattice by overexpression of NuMA, Exp. Cell Res., 243, 434–452.PubMedGoogle Scholar
  62. 62.
    Saredi, A., Howard, L., and Compton, D. A. (1996) NuMA assembles into an extensive filamentous structure when expressed in the cell cytoplasm, J. Cell Sci., 109(Pt. 3), 619–630.PubMedGoogle Scholar
  63. 63.
    Razin, S. V., and Gromova, I. I. (1995) The channels model of the nuclear matrix structure, BioEssays, 17, 443–450.PubMedGoogle Scholar
  64. 64.
    Hancock, R., and Hughes, M. E. (1982) Organization of DNA in the eukaryotic nucleus, Biol. Cell, 44, 201–212.Google Scholar
  65. 65.
    Razin, S. V., Mantieva, V. L., and Georgiev, G. P. (1978) DNA adjacent to the attachment points of DNP fibril to chromosomal axial structure is enriched in reiterated base sequences, Nucleic Acids Res., 5, 4737–4751.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Jeppesen, P. G., and Bankier, A. T. (1979) A partial characterization of DNA fragments protected from nuclease degradation in histone depleted metaphase chromosomes of the Chinese hamster, Nucleic Acids Res., 7, 49–67.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Boulikas, T. (1993) Nature of DNA sequences at the attachment regions of genes to the nuclear matrix, J. Cell. Biochem., 52, 14–22.PubMedGoogle Scholar
  68. 68.
    Basler, J., Hastie, N. D., Pietras, D., Matsui, S., Sandgerg, A. A., and Berezney, R. (1981) Hybridization of nuclear matrix attached deoxyribonucleic acid fragments, Biochemistry, 20, 6921–6929.PubMedGoogle Scholar
  69. 69.
    Mirkovitch, J., Mirault, M.-E., and Laemmli, U. K. (1984) Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold, Cell, 39, 223–232.PubMedGoogle Scholar
  70. 70.
    Gasser, S. M., and Laemmli, U. K. (1986) The organization of chromatin loops: characterization of a scaffold attachment site, EMBO J., 5, 511–518.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Gasser, S. M., and Laemmli, U. K. (1986) Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster, Cell, 46, 521–530.PubMedGoogle Scholar
  72. 72.
    Cockerill, P. N., and Garrard, W. T. (1986) Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites, Cell, 44, 273–282.PubMedGoogle Scholar
  73. 73.
    Cockerill, P. N., and Garrard, W. T. (1986) Chromosomal loop anchorage sites appear to be evolutionary conserved, FEBS Lett., 204, 5–7.PubMedGoogle Scholar
  74. 74.
    Izaurralde, E., Mirkovich, J., and Laemmli, U. K. (1988) Interaction of DNA with nuclear scaffolds in vitro, J. Mol. Biol., 200, 111–125.PubMedGoogle Scholar
  75. 75.
    Bode, J., Schlake, T., Rios-Ramirez, M., Mielke, C., Stengert, M., Kay, V., and Klehr-Wirth, D. (1995) Scaffold/matrix-attached regions: structural properties creating transcriptionally active loci, Int. Rev. Cytol., 162A, 389–454.PubMedGoogle Scholar
  76. 76.
    Bode, J., Kohwi, Y., Dickinson, L., Joh, T., Klehr, D., Mielke, C., and Kohwi-Shigematsu, T. (1992) Biological significance of unwinding capability nuclear matrix-associating DNAs, Science, 255, 195–197.PubMedGoogle Scholar
  77. 77.
    Bode, J., Goetze, S., Heng, H., Krawetz, S. A., and Benham, C. (2003) From DNA structure to gene expression: mediators of nuclear compartmentalization and dynamics, Chromosome Res., 11, 435–445.PubMedGoogle Scholar
  78. 78.
    Fiorini, A., Gouveia, F. de S., and Fernandez, M. A. (2006) Scaffold/matrix attachment regions and intrinsic DNA curvature, Biochemistry (Moscow), 71, 481–488.Google Scholar
  79. 79.
    Razin, S. V. (2001) The nuclear matrix and chromosomal DNA loops: is there any correlation between partitioning of the genome into loops and functional domains, Cell Mol. Biol. Lett., 6, 59–69.PubMedGoogle Scholar
  80. 80.
    Hempel, K., and Stratling, W. H. (1996) The chicken lysozyme gene 5′ MAR and the Drosophila histone SAR are electroelutable from encapsulated and digested nuclei, J. Cell Sci., 109, 1459–1469.PubMedGoogle Scholar
  81. 81.
    Chattopadhyay, S., and Pavithra, L. (2007) MARs and MARBPs: key modulators of gene regulation and disease manifestation, Subcell. Biochem., 41, 213–230.PubMedGoogle Scholar
  82. 82.
    Wang, T. Y., Han, Z. M., Chai, Y. R., and Zhang, J. H. (2010) A mini review of MAR-binding proteins, Mol. Biol. Rep., 37, 3553–3560.PubMedGoogle Scholar
  83. 83.
    Luderus, M. E., den Blaauwen, J. L., de Smit, O. J., Compton, D. A., and van Driel, R. (1994) Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove, Mol. Cell. Biol., 14, 6297–6305.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Dickinson, L. A., Joh, T., Kohwi, Y., and Kohwi-Shigematsu, T. (1992) A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition, Cell, 70, 631–645.PubMedGoogle Scholar
  85. 85.
    Nakagomi, K., Kohwi, Y., Dickinson, L. A., and Kohwi-Shigematsu, T. (1994) A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1, Mol. Cell. Biol., 14, 1852–1860.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Romig, H., Fackelmayer, F. O., Renz, A., Ramsperger, U., and Richter, A. (1992) Characterization of SAF-A, a novel nuclear DNA binding protein from HeLa cells with high affinity for nuclear matrix/scaffold attachment DNA elements, EMBO J., 11, 3431–3440.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Cai, S., Han, H. J., and Kohwi-Shigematsu, T. (2003) Tissue-specific nuclear architecture and gene expression regulated by SATB1, Nat. Genet., 34, 42–51.PubMedGoogle Scholar
  88. 88.
    Cai, S., Lee, C. C., and Kohwi-Shigematsu, T. (2006) SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes, Nat. Genet., 38, 1278–1288.PubMedGoogle Scholar
  89. 89.
    Gong, F., Sun, L., Wang, Z., Shi, J., Li, W., Wang, S., Han, X., and Sun, Y. (2011) The BCL2 gene is regulated by a special AT-rich sequence binding protein 1-mediated long range chromosomal interaction between the promoter and the distal element located within the 3′-UTR, Nucleic Acids Res., 39, 4640–4652.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Wang, L., Di, L. J., Lv, X., Zheng, W., Xue, Z., Guo, Z. C., Liu, D. P., and Liang, C. C. (2009) Inter-MAR association contributes to transcriptionally active looping events in human beta-globin gene cluster, PLoS One, 4, e4629.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Cook, P. R., and Brazell, I. A. (1980) Mapping sequences in loops of nuclear DNA by their progressive detachment from the nuclear cage, Nucleic Acids Res., 8, 2895–2907.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Cook, P. R., Lang, J., Hayday, A., Lania, L., Fried, M., Chiswell, D. J., and Wyke, A. (1982) Active viral genes in transformed cells lie close to the nuclear cage, EMBO J., 1, 447–452.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Robinson, S. I., Nelkin, B. D., and Volgelstein, B. (1982) The ovalbumin gene is associated with the nuclear matrix of chicken oviduct cells, Cell, 28, 99–106.PubMedGoogle Scholar
  94. 94.
    Robinson, S. I., Small, D., Idzerda, R., McKnight, G. S., and Vogelstein, B. (1983) The association of active genes with the nuclear matrix of the chicken oviduct, Nucleic Acids Res., 15, 5113–5130.Google Scholar
  95. 95.
    Small, D., Nelkin, B., and Vogelstein, B. (1985) The association of transcribed genes with the nuclear matrix of Drosophila cells during heat shock, Nucleic Acids Res., 13, 2413–2431.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Ciejek, E. M., Tsai, M.-J., and O’Malley, B. W. (1983) Actively transcribed genes are associated with the nuclear matrix, Nature, 306, 607–609.PubMedGoogle Scholar
  97. 97.
    McCready, S. J., Godwin, J., Mason, D. W., Brazell, I. A., and Cook, P. R. (1980) DNA is replicated at the nuclear cage, J. Cell Sci., 46, 365–386.PubMedGoogle Scholar
  98. 98.
    Razin, S., Rzeszowska-Wolny, J., Moreau, J., and Scherrer, K. (1985) Localization of sites of DNA attachment to the nuclear matrix in the domain of the chicken alpha-globin genes in functionally active and inactive nuclei, Mol. Biol., 19, 376–385.Google Scholar
  99. 99.
    Razin, S. V., Kekelidze, M. G., Lukanidin, E. M., Scherrer, K., and Georgiev, G. P. (1986) Replication origins are attached to the nuclear skeleton, Nucleic Acids Res., 14, 8189–8207.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Kalandadze, A. G., Bushara, S. A., Vassetzky, Y. S., Jr., and Razin, S. V. (1990) Characterization of DNA pattern in the site of permanent attachment to the nuclear matrix located in the vicinity of replication origin, Biochem. Biophys. Res. Commun., 168, 9–15.PubMedGoogle Scholar
  101. 101.
    Yaron, Y., Kramer, J. A., Gyi, K., Ebrahim, S. A., Evans, M. I., Johnson, M. P., and Krawetz, S. A. (1998) Centromere sequences localize to the nuclear halo of human spermatozoa, Int. J. Androl., 21, 13–18.PubMedGoogle Scholar
  102. 102.
    Mohar, I., Szczygiel, M. A., Yanagimachi, R., and Ward, W. S. (2002) Sperm nuclear halos can transform into normal chromosomes after injection into oocytes, Mol. Reprod. Dev., 62, 416–420.PubMedGoogle Scholar
  103. 103.
    Johnson, G. D., Lalancette, C., Linnemann, A. K., Leduc, F., Boissonneault, G., and Krawetz, S. A. (2011) The sperm nucleus: chromatin, RNA, and the nuclear matrix, Reproduction, 141, 21–36.PubMedGoogle Scholar
  104. 104.
    Razin, S. V. (1987) DNA interaction with the nuclear matrix and spatial organization of replication and transcription, BioEssays, 6, 19–23.PubMedGoogle Scholar
  105. 105.
    Gromova, I. I., Thomsen, B., and Razin, S. V. (1995) Different topoisomerase II antitumor drugs direct similar specific long-range fragmentation of an amplified c-MYC gene locus in living cells and in high-salt-extracted nuclei, Proc. Natl. Acad. Sci. USA, 92, 102–106.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Iarovaia, O. V., Hancock, R., Lagarkova, M. A., Miassod, R., and Razin, S. V. (1996) Mapping of genomic DNA loop organization in a 500-kilobase region of the Drosophila X chromosome using the topoisomerase II-mediated DNA loop excision protocol, Mol. Cell. Biol., 16, 302–308.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Razin, S. V., Hancock, R., Iarovaia, O., Westergaard, O., Gromova, I., and Georgiev, G. P. (1993) Structural-functional organization of chromosomal DNA domains, Cold Spring Harbor Symp. Quant. Biol., 58, 25–35.PubMedGoogle Scholar
  108. 108.
    Razin, S. V., Petrov, P., and Hancock, R. (1991) Precise localization of the a-globin gene cluster within one of the 20- to 300-Kilobase DNA fragment released by cleavage of chicken chromosomal DNA at topoisomerase II site in vivo: evidence that the fragment are DNA loops or domains, Proc. Natl. Acad. Sci. USA, 88, 8515–8519.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Iarovaia, O. V., Bystritskiy, A., Ravcheev, D., Hancock, R., and Razin, S. V. (2004) Visualization of individual DNA loops and a map of loop-domains in the human dystrophin gene, Nucleic Acids Res., 32, 2079–2086.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Buongiorno-Nardelli, M., Gioacchino, M., Carri, M. T., and Marilley, M. (1982) A relationship between replicon size and supercoiled loop domains in the eukaryotic genome, Nature, 298, 100–102.PubMedGoogle Scholar
  111. 111.
    Vassetzky, Y., Hair, A., and Mechali, M. (2000) Rearrangement of chromatin domains during development in Xenopus, Genes Dev., 14, 1541–1552.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Lemaitre, J. M., Danis, E., Pasero, P., Vassetzky, Y., and Mechali, M. (2005) Mitotic remodeling of the replicon and chromosome structure, Cell, 123, 787–801.PubMedGoogle Scholar
  113. 113.
    Hozak, P., Hassan, A. B., Jackson, D. A., and Cook, P. R. (1993) Visualization of replication factories attached to nucleoskeleton, Cell, 73, 361–373.PubMedGoogle Scholar
  114. 114.
    Jackson, D. A., and Pombo, A. (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells, J. Cell Biol., 140, 1285–1295.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Iborra, F. J., Pombo, A., Jackson, D. A., and Cook, P. R. (1996) Active RNA polymerases are localized within discrete transcription “factories” in human nuclei, J. Cell Sci., 109(Pt. 6), 1427–1436.PubMedGoogle Scholar
  116. 116.
    Jackson, D. A., Hassan, A. B., Errington, R. J., and Cook, P. R. (1993) Visualization of focal sites of transcription within human nuclei, EMBO J., 12, 1059–1065.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Jackson, D. A., Iborra, F. J., Manders, E. M., and Cook, P. R. (1998) Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei, Mol. Biol. Cell, 9, 1523–1536.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Spector, D. L., Fu, X. D., and Maniatis, T. (1991) Associations between distinct pre-mRNA splicing components and the cell nucleus, EMBO J., 10, 3467–3481.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Huang, S., and Spector, D. L. (1991) Nascent pre-mRNA transcripts are associated with nuclear regions enriched in splicing factors, Genes Dev., 5, 2288–2302.PubMedGoogle Scholar
  120. 120.
    Carmo-Fonseca, M. (2002) The contribution of nuclear compartmentalization to gene regulation, Cell, 108, 513–521.PubMedGoogle Scholar
  121. 121.
    Zimber, A., Nguyen, Q. D., and Gespach, C. (2004) Nuclear bodies and compartments: functional roles and cellular signaling in health and disease, Cell Signal, 16, 1085–1104.PubMedGoogle Scholar
  122. 122.
    Jackson, D. A. (1997) Chromatin domains and nuclear compartments: establishing sites of gene expression in eukaryotic nuclei, Mol. Biol. Rep., 24, 209–220.PubMedGoogle Scholar
  123. 123.
    Mattern, K. A., van der Kraan, I., Schul, W., de Jong, L., and van Driel, R. (1999) Spatial organization of four hn RNP proteins in relation to sites of transcription, to nuclear speckles, and to each other in interphase nuclei and nuclear matrices of HeLa cells, Exp. Cell. Res., 246, 461–470.PubMedGoogle Scholar
  124. 124.
    Brown, K. (1999) Nuclear structure, gene expression and development, Crit. Rev. Eukaryot. Gene Expr., 9, 203–212.PubMedGoogle Scholar
  125. 125.
    Weintraub, H., and Groudine, M. (1976) Chromosomal subunits in active genes have an altered conformation, Science, 73, 848–856.Google Scholar
  126. 126.
    Cremer, T., and Cremer, C. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet., 2, 292–301.PubMedGoogle Scholar
  127. 127.
    Cremer, T., Kreth, G., Koester, H., Fink, R. H., Heintzmann, R., Cremer, M., Solovei, I., Zink, D., and Cremer, C. (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture, Crit. Rev. Eukaryot. Gene Expr., 10, 179–212.PubMedGoogle Scholar
  128. 128.
    Cremer, T., Kurz, A., Zirbel, R., Dietzel, S., Rinke, B., Schrock, E., Speicher, M. R., Mathieu, U., Jauch, A., Emmerich, P., Scherthan, H., Ried, T., Cremer, C., and Lichter, P. (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus, Cold Spring Harb. Symp. Quant. Biol., 58, 777–792.PubMedGoogle Scholar
  129. 129.
    Visser, A. E., Jaunin, F., Fakan, S., and Aten, J. A. (2000) High resolution analysis of interphase chromosome domains, J. Cell Sci., 113(Pt. 14), 2585–2593.PubMedGoogle Scholar
  130. 130.
    Cremer, T., and Cremer, M. (2010) Chromosome territories, Cold Spring Harb. Perspect. Biol., 2, a003889.PubMedCentralPubMedGoogle Scholar
  131. 131.
    Marshall, W. F., Fung, J. C., and Sedat, J. W. (1997) Deconstructing the nucleus: global architecture from local interactions, Curr. Opin. Genet. Dev., 7, 259–263.PubMedGoogle Scholar
  132. 132.
    Cheutin, T., Bantignies, F., Leblanc, B., and Cavalli, G. (2010) Chromatin folding: from linear chromosomes to the 4D nucleus, Cold Spring Harb. Symp. Quant. Biol., 75, 461–473.PubMedGoogle Scholar
  133. 133.
    Razin, S. V., Gavrilov, A. A., Ioudinkova, E. S., and Iarovaia, O. V. (2013) Communication of genome regulatory elements in a folded chromosome, FEBS Lett., 587, 1840–1847.PubMedGoogle Scholar
  134. 134.
    De Laat, W., Klous, P., Kooren, J., Noordermeer, D., Palstra, R. J., Simonis, M., Splinter, E., and Grosveld, F. (2008) Three-dimensional organization of gene expression in erythroid cells, Curr. Top. Dev. Biol., 82, 117–139.PubMedGoogle Scholar
  135. 135.
    Gibcus, J. H., and Dekker, J. (2013) The hierarchy of the 3D genome, Mol. Cell, 49, 773–782.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S., and Dekker, J. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289–293.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Naumova, N., Smith, E. M., Zhan, Y., and Dekker, J. (2012) Analysis of long-range chromatin interactions using chromosome conformation capture, Methods, 58, 192–203.PubMedGoogle Scholar
  138. 138.
    Sanyal, A., Lajoie, B. R., Jain, G., and Dekker, J. (2012) The long-range interaction landscape of gene promoters, Nature, 489, 109–113.PubMedCentralPubMedGoogle Scholar
  139. 139.
    Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 485, 376–380.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Dostie, J., and Bickmore, W. A. (2012) Chromosome organization in the nucleus — charting new territory across the Hi-Cs, Curr. Opin. Genet. Dev., 22, 125–131.PubMedGoogle Scholar
  141. 141.
    Cremer, T., Kupper, K., Dietzel, S., and Fakan, S. (2004) Higher order chromatin architecture in the cell nucleus: on the way from structure to function, Biol. Cell, 96, 555–567.PubMedGoogle Scholar
  142. 142.
    Cook, P. R. (2002) Predicting three-dimensional genome structure from transcriptional activity, Nat. Genet., 32, 347–352.PubMedGoogle Scholar
  143. 143.
    Cook, P. R. (2010) A model for all genomes: the role of transcription factories, J. Mol. Biol., 395, 1–10.PubMedGoogle Scholar
  144. 144.
    Razin, S. V., Gavrilov, A. A., Pichugin, A., Lipinski, M., Iarovaia, O. V., and Vassetzky, Y. S. (2011) Transcription factories in the context of the nuclear and genome organization, Nucleic Acids Res., 39, 9085–9092.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Markaki, Y., Gunkel, M., Schermelleh, L., Beichmanis, S., Neumann, J., Heidemann, M., Leonhardt, H., Eick, D., Cremer, C., and Cremer, T. (2010) Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment, Cold Spring Harb. Symp. Quant. Biol., 75, 475–492.PubMedGoogle Scholar
  146. 146.
    Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B., Talhout, W., Eussen, B. H., de Klein, A., Wessels, L., de Laat, W., and van Steensel, B. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions, Nature, 453, 948–951.PubMedGoogle Scholar
  147. 147.
    Van Bemmel, J. G., Pagie, L., Braunschweig, U., Brugman, W., Meuleman, W., Kerkhoven, R. M., and van Steensel, B. (2010) The insulator protein SU (HW) finetunes nuclear lamina interactions of the Drosophila genome, PLoS One, 5, e15013.PubMedCentralPubMedGoogle Scholar
  148. 148.
    Van Koningsbruggen, S., Gierlinski, M., Schofield, P., Martin, D., Barton, G. J., Ariyurek, Y., den Dunnen, J. T., and Lamond, A. I. (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli, Mol. Biol. Cell, 21, 3735–3748.PubMedCentralPubMedGoogle Scholar
  149. 149.
    Lanzuolo, C., Roure, V., Dekker, J., Bantignies, F., and Orlando, V. (2007) Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex, Nat. Cell Biol., 9, 1167–1174.PubMedGoogle Scholar
  150. 150.
    Comet, I., Schuettengruber, B., Sexton, T., and Cavalli, G. (2011) A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber, Proc. Natl. Acad. Sci. USA, 108, 2294–2299.PubMedCentralPubMedGoogle Scholar
  151. 151.
    Li, H. B., Muller, M., Bahechar, I. A., Kyrchanova, O., Ohno, K., Georgiev, P., and Pirrotta, V. (2011) Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in Drosophila melanogaster, Mol. Cell Biol., 31, 616–625.PubMedCentralPubMedGoogle Scholar
  152. 152.
    Noordermeer, D., Leleu, M., Splinter, E., Rougemont, J., de Laat, W., and Duboule, D. (2011) The dynamic architecture of Hox gene clusters, Science, 334, 222–225.PubMedGoogle Scholar
  153. 153.
    Pirrotta, V., and Li, H. B. (2012) A view of nuclear Polycomb bodies, Curr. Opin. Genet. Dev., 22, 101–109.PubMedCentralPubMedGoogle Scholar
  154. 154.
    Festenstein, R., Pagakis, S. N., Hiragami, K., Lyon, D., Verreault, A., Sekkali, B., and Kioussis, D. (2003) Modulation of heterochromatin protein 1 dynamics in primary mammalian cells, Science, 299, 719–721.PubMedGoogle Scholar
  155. 155.
    Schmiedeberg, L., Weisshart, K., Diekmann, S., Meyer Zu Hoerste, G., and Hemmerich, P. (2004) High- and low-mobility populations of HP1 in heterochromatin of mammalian cells, Mol. Biol. Cell, 15, 2819–2833.PubMedCentralPubMedGoogle Scholar
  156. 156.
    Ficz, G., Heintzmann, R., and Arndt-Jovin, D. J. (2005) Polycomb group protein complexes exchange rapidly in living Drosophila, Development, 132, 3963–3976.PubMedGoogle Scholar
  157. 157.
    Kumaran, R. I., and Spector, D. L. (2008) A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence, J. Cell Biol., 180, 51–65.PubMedCentralPubMedGoogle Scholar
  158. 158.
    Reddy, K. L., Zullo, J. M., Bertolino, E., and Singh, H. (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina, Nature, 452, 243–247.PubMedGoogle Scholar
  159. 159.
    Kind, J., Pagie, L., Ortabozkoyun, H., Boyle, S., de Vries, S. S., Janssen, H., Amendola, M., Nolen, L. D., Bickmore, W. A., and van Steensel, B. (2013) Single-cell dynamics of genome-nuclear lamina interactions, Cell, 153, 178–192.PubMedGoogle Scholar
  160. 160.
    Kind, J., and van Steensel, B. (2010) Genome-nuclear lamina interactions and gene regulation, Curr. Opin. Cell Biol., 22, 320–325.PubMedGoogle Scholar
  161. 161.
    Simon, D. N., and Wilson, K. L. (2011) The nucleoskeleton as a genome-associated dynamic “network of networks”, Nat. Rev. Mol. Cell Biol., 12, 695–708.PubMedGoogle Scholar
  162. 162.
    Ohlsson, R., Bartkuhn, M., and Renkawitz, R. (2010) CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin, Chromosoma, 119, 351–360.PubMedCentralPubMedGoogle Scholar
  163. 163.
    Sofueva, S., and Hadjur, S. (2012) Cohesin-mediated chromatin interactions into the third dimension of gene regulation, Brief Funct. Genom., 11, 205–216.Google Scholar
  164. 164.
    Sofueva, S., Yaffe, E., Chan, W. C., Georgopoulou, D., Vietri Rudan, M., Mira-Bontenbal, H., Pollard, S. M., Schroth, G. P., Tanay, A., and Hadjur, S. (2013) Cohesinmediated interactions organize chromosomal domain architecture, EMBO J., 32, 3119–3129.PubMedGoogle Scholar
  165. 165.
    Phillips-Cremins, J. E., Sauria, M. E., Sanyal, A., Gerasimova, T. I., Lajoie, B. R., Bell, J. S., Ong, C. T., Hookway, T. A., Guo, C., Sun, Y., Bland, M. J., Wagstaff, W., Dalton, S., McDevitt, T. C., Sen, R., Dekker, J., Taylor, J., and Corces, V. G. (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment, Cell, 153, 1281–1295.PubMedCentralPubMedGoogle Scholar
  166. 166.
    Misteli, T. (2001) Protein dynamics: implications for nuclear architecture and gene expression, Science, 291, 843–847.PubMedGoogle Scholar
  167. 167.
    Pliss, A., Malyavantham, K. S., Bhattacharya, S., and Berezney, R. (2013) Chromatin dynamics in living cells: identification of oscillatory motion, J. Cell. Physiol., 228, 609–616.PubMedGoogle Scholar
  168. 168.
    Marshall, W. F. (2002) Order and disorder in the nucleus, Curr. Biol., 12, R185–192.PubMedGoogle Scholar
  169. 169.
    Marshall, W. F., Straight, A., Marko, J. F., Swedlow, J., Dernburg, A., Belmont, A., Murray, A. W., Agard, D. A., and Sedat, J. W. (1997) Interphase chromosomes undergo constrained diffusional motion in living cells, Curr. Biol., 7, 930–939.PubMedGoogle Scholar
  170. 170.
    Levi, V., Ruan, Q., Plutz, M., Belmont, A. S., and Gratton, E. (2005) Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope, Biophys. J., 89, 4275–4285.PubMedCentralPubMedGoogle Scholar
  171. 171.
    Caudron-Herger, M., and Rippe, K. (2012) Nuclear architecture by RNA, Curr. Opin. Genet. Dev., 22, 179–187.PubMedGoogle Scholar
  172. 172.
    Kawaguchi, T., and Hirose, T. (2012) Architectural roles of long noncoding RNAs in the intranuclear formation of functional paraspeckles, Front. Biosci., 17, 1729–1746.Google Scholar
  173. 173.
    Clemson, C. M., Hutchinson, J. N., Sara, S. A., Ensminger, A. W., Fox, A. H., Chess, A., and Lawrence, J. B. (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles, Mol. Cell, 33, 717–726.PubMedCentralPubMedGoogle Scholar
  174. 174.
    Ilik, I., and Akhtar, A. (2009) roX RNAs: non-coding regulators of the male X chromosome in flies, RNA Biol., 6, 113–121.PubMedGoogle Scholar
  175. 175.
    Cocco, L., Martelli, A. M., Billi, A. M., Cataldi, A., Miscia, S., Mottola, M. R., and Manzoli, L. (1987) Phospholipids as components of the nuclear matrix: their possible biological significance, Basic Appl. Histochem., 31, 413–419.PubMedGoogle Scholar
  176. 176.
    Lucki, N. C., and Sewer, M. B. (2012) Nuclear sphingolipid metabolism, Ann. Rev. Physiol., 74, 131–151.Google Scholar
  177. 177.
    Albi, E., Cataldi, S., Rossi, G., and Magni, M. V. (2003) A possible role of cholesterol-sphingomyelin/phosphatidylcholine in nuclear matrix during rat liver regeneration, J. Hepatol., 38, 623–628.PubMedGoogle Scholar
  178. 178.
    Albi, E., and Viola Magni, M. P. (2004) The role of intranuclear lipids, Biol. Cell, 96, 657–667.PubMedGoogle Scholar
  179. 179.
    Albi, E., Lazzarini, A., Lazzarini, R., Floridi, A., Damaskopoulou, E., Curcio, F., and Cataldi, S. (2013) Nuclear lipid microdomain as place of interaction between sphingomyelin and DNA during liver regeneration, Int. J. Mol. Sci., 14, 6529–6541.PubMedCentralPubMedGoogle Scholar
  180. 180.
    Razin, S. V., Kekelidze, M. G., and Lukanidin, E. M. (1986) Spatial organization of replicons in the eukaryotic nucleus: attachment of replication initiation regions to the nuclear skeleton, Mol. Biol. (Moscow), 20, 387–395.Google Scholar
  181. 181.
    Razin, S. V., Rzeszowska-Wolny, J., Moreau, J., and Scherrer, K. (1985) Localization of regions of DNA attachment to the nuclear skeleton within chicken alphaglobin genes in functionally active and functionally inactive nuclei, Mol. Biol. (Moscow), 19, 456–466.Google Scholar
  182. 182.
    Shaman, J. A., Yamauchi, Y., and Ward, W. S. (2007) Function of the sperm nuclear matrix, Arch. Androl., 53, 135–140.PubMedGoogle Scholar
  183. 183.
    Klaus, A. V., McCarrey, J. R., Farkas, A., and Ward, W. S. (2001) Changes in DNA loop domain structure during spermatogenesis and embryogenesis in the Syrian golden hamster, Biol. Reprod., 64, 1297–1306.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. V. Razin
    • 1
    • 2
    • 3
    Email author
  • V. V. Borunova
    • 3
  • O. V. Iarovaia
    • 1
    • 2
  • Y. S. Vassetzky
    • 2
    • 4
  1. 1.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  2. 2.LIA 1066 French-Russian Joint Cancer Research LaboratoryMoscowRussia
  3. 3.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  4. 4.UMR8126Université Paris-Sud, CNRS, Institut de Cancérologie Gustave RoussyVillejuifFrance

Personalised recommendations