Biochemistry (Moscow)

, Volume 79, Issue 7, pp 593–607 | Cite as

Structural and functional organization of growing tips of Neurospora crassa hyphae

Review

Abstract

Data are presented on a variety of intracellular structures of the vegetative hyphae of the filamentous fungus Neurospora crassa and the involvement of these structures in the tip growth of the hyphae. Current ideas on the molecular and genetic mechanisms of tip growth and regulation of this process are considered. On the basis of comparison of data on behaviors of mitochondria and microtubules and data on the electrical heterogeneity of the hyphal apex, a hypothesis is proposed about a possible supervisory role of the longitudinal electric field in the structural and functional organization of growing tips of the N. crassa hyphae.

Key words

Neurospora crassa tip growth interaction of intracellular structures electrical heterogeneity of hypha 

Abbreviations

GFP

green fluorescent protein

MTR

Mitotracker Red

TG

tip growth

Vm

membrane potential

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geitmann, A., Cresti, M., and Heath, I. B. (eds.) (2001) Cell Biology of Plant and Fungal Tip Growth: Proceedings of the NATO Advanced Research Workshop, 19–23 June 2000, Sienna, Italy, NATO Science Series, IOS Press, Amsterdam-Berlin-Oxford-Tokyo-Washington.Google Scholar
  2. 2.
    Harold, F. M. (2001) The Way of the Cell: Molecules, Organisms and the Order of Life, Oxford University Press.Google Scholar
  3. 3.
    Davis, R. H. (2000) Neurospora: Contributions of a Model Organism, Oxford University Press.Google Scholar
  4. 4.
    Trinci, A. P. J., Wiebe, M. G., and Robson, G. D. (1994) The mycelium as an integrated entity, in The Mycota I. Growth, Differentiation and Sexuality, Springer-Verlag, Berlin-Heidelberg, pp. 175–193.Google Scholar
  5. 5.
    Aslanidi, K. B., Boitsova, L. Yu., Potapova, T. V., and Smolyaninov, V. V. (1996) “The hypha growth unit” of Neurospora crassa as an experimental model to analyze the concept of informational energetic model, Biol. Membr. (Moscow), 13, 27–37.Google Scholar
  6. 6.
    Borkovich, K. A., Alex, L. A., Yarden, O., Freitag, M., Turner, G. E., Read, N. D., Seiler, S., Bell-Pedersen, D., Paietta, J., Plesofsky, N., Plamann, M., Goodrich-Tanrikula, M., Schulte, U., Mannhaupt, G., Nargang, F. E., Radford, A., Selitrennikoff, C., Galagan, J. E., Dunlap, J. C., Loros, J. J., Catcheside, D., Inoue, H., Aramayo, R., Polymenis, M., Selker, E. U., Sachs, M. S., Marzluf, G. A., Paulsen, I., Davis, R., Ebbole, D. J., Zelter, A., Kalkman, E. R., O’Rourke, R., Bowring, F., Yeadon, J., Ishii, C., Suzuki, K., Sakai, W., and Pratt, R. (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism, Microbiol. Mol. Biol. Rev., 68, 1–108.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Xie, X., Wilkinson, H. H., Correa, A., Lewis, Z. A., Bell-Pedersen, D., and Ebbole, D. J. (2004) Transcriptional response to glucose starvation and functional analysis of a glucose transporter of Neurospora crassa, Fungal Genet. Biol., 41, 1104–1119.PubMedGoogle Scholar
  8. 8.
    Collinge, A. J., and Trinci, A. P. J. (1974) Hyphal tips of wild-type and spreading colonial mutants of Neurospora crassa, Arch. Microbiol., 99, 353–368.PubMedGoogle Scholar
  9. 9.
    Hickey, P. C., Swift, S. R., Roca, M. G., and Read, N. D. (2005) Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy, Methods Microbiol., 34, 63–87.Google Scholar
  10. 10.
    Silverman-Gavrila, L. B., and Lew, R. R. (2003) Calcium gradient dependence of Neurospora crassa hyphal growth, Microbiology, 149, 2475–2485.PubMedGoogle Scholar
  11. 11.
    Aslanidi, K. B., Pogorelov, F. G., Aslanidi, O. V., Mornev, O. A., and Potapova, T. V. (2000) Distribution of potassium content in Neurospora crassa hypha, Dokl. Ros. Akad. Nauk, 372, 253–256.Google Scholar
  12. 12.
    Lew, R. R., and Levina, N. N. (2004) Oxygen flux magnitude and location along growing hyphae of Neurospora crassa, FEMS Microbiol. Lett., 233, 125–130.PubMedGoogle Scholar
  13. 13.
    Tey, W. K., North, A. J., Reyes, J. L., Lu, Y. F., and Jedd, G. (2005) Polarized gene expression determines Woronin body formation at the leading edge of the fungal colony, Mol. Biol. Cell, 16, 2651–2659.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Slayman, C. L., and Slayman, C. W. (1962) Measurements of membrane potential in Neurospora, Science, 136, 876–877.PubMedGoogle Scholar
  15. 15.
    Potapova, T. V., Aslanidi, K. B., Belozerskaya, T. A., and Levina, N. N. (1988) Transcellular ionic currents studied by intracellular potential recordings in Neurospora crassa hyphae (Transfer of energy from proximal to apical cells), FEBS Lett., 241, 173–176.PubMedGoogle Scholar
  16. 16.
    Takeuchi, Y., Schmid, J., Caldwell, J. H., and Harold, F. M. (1988) Transcellular ion currents and extension of Neurospora crassa hyphae, J. Membr. Biol., 101, 33–41.PubMedGoogle Scholar
  17. 17.
    Potapova, T. V., Boitzova, L. Ju., and Golyshev, S. A. (2011) About the question of organization of interactions of N. crassa intracellular structures in the tip growth, Dokl. Ros. Akad. Nauk, 436, 834–838.Google Scholar
  18. 18.
    Potapova, T. V. (2012) Cell-to-cell communication in the tip growth of mycelial fungi, in Biocommunication of Fungi (Witzani, G., ed.), Springer-Verlag, Berlin-Heidelberg, pp. 103–114.Google Scholar
  19. 19.
    Slayman, C. L. (1987) The plasma membrane ATPase of Neurospora: a proton-pumping electroenzyme, J. Bioenerg. Biomembr., 19, 1–20.PubMedGoogle Scholar
  20. 20.
    Riquelme, M., Freitag, M., Leon-Hing, E. S., and Bowman, B. (2005) Live imaging of the secretory pathway in hyphae of Neurospora crassa, Fungal Genet. Newsl., 52(Suppl.), 53.Google Scholar
  21. 21.
    Perkins, D. D., Radford, A., and Sachs, M. S. (2001) The Neurospora compendium, Academic Press.Google Scholar
  22. 22.
    Davis, R. H., and Perkins, D. D. (2002) Neurospora: a model of model microbes, Nature Rev. Genet., 3, 7–13.Google Scholar
  23. 23.
    Filippovich, S. Y., Bachurina, G. P., and Kritsky, M. S. (2004) A supermodel neurospora, Priroda, 3, 1–9.Google Scholar
  24. 24.
    Steinberg, G., and Schliwa, M. (1993) Organelle movements in the wild type and wall-less fz;sg;os-1 mutants of Neurospora crassa are mediated by cytoplasmic microtubules, J. Cell Sci., 106, 555–564.PubMedGoogle Scholar
  25. 25.
    Mourino-Perez, R. R., Robertson, R. W., and Bartnicki-Garcia, S. (2006) Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa, Fungal Gen. Biol., 43, 389–400.Google Scholar
  26. 26.
    Steinberg, G. (2007) Hyphal growth: a tale of motors, lipids, and Spitzenkorper, Eukar. Cell, 6, 351–360.Google Scholar
  27. 27.
    Fischer, R., Zekert, N., and Takeshita, N. (2008) Polarized growth in fungi — interplay between the cytoskeleton, positional markers and membrane domains, Mol. Microbiol., 68, 813–826.PubMedGoogle Scholar
  28. 28.
    Riquelme, M., Yarden, O., Bartnicki-Garcia, S., Bowman, B., Castro-Longoria, E., Free, S. J., Fleibner, A., Freitag, M., Lew, R., Mourino-Perez, R., Plamann, M., Rasmussen, C., Richthammer, C., Roberson, R. W., Sanchez-Leon, E., Seiler, S., and Watters, M. K. (2011) Architecture and development of the Neurospora crassa hypha — a model cell for polarized growth, Fungal Biol., 115, 446–474; doi: 10.1016/j.funbio.2011.02.008.PubMedGoogle Scholar
  29. 29.
    Seiler, S., Nargang, F. E., Steinberg, G., and Schliwa, M. (1997) Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa, EMBO J., 16, 3025–3034.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Seiler, S., Plamann, M., and Schliwa, M. (1999) Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora, Curr. Biol., 9, 779–785.PubMedGoogle Scholar
  31. 31.
    Girbardt, M. (1969) Die Ultrastruktur der Apikalregion von Pilzhyphen, Protoplasma, 67, 413–441.Google Scholar
  32. 32.
    Bartnicki-Garcia, S., Hergert, F., and Gierz, G. (1989) Computer simulation of fungal morphogenesis and the mathematical basis for hyphal tip growth, Protoplasma, 153, 46–57.Google Scholar
  33. 33.
    Bartnicki-Garcia, S., Bartnicki, D. D., Gierz, G., Lopezfranco, R., and Bracker, C. E. (1995) Evidence that the Spitzenkorper behavior determines the shape of a fungal hypha — a test of the hyphoid model, Exp. Mycol., 19, 153–159.PubMedGoogle Scholar
  34. 34.
    Riquelme, M., Reynagapena, C. G., Gierz, G., and Bartnicki-Garcia, S. (1998) What determines growth direction in fungal hyphae, Fungal Genet. Biol., 24, 101–109.PubMedGoogle Scholar
  35. 35.
    Galagan, J. E., Calvo, S. E., Borkovich, K. A., Selker, E. U., Read, N. D., Jaffe, D., FitzHugh, W., Ma, L. J., Smirnov, S., Purcell, S., Rehman, B., Elkins, T., Engels, R., Wang, S., Nielsen, C. B., Butler, J., Endrizzi, M., Qui, D., Ianakiev, P., Bell-Pedersen, D., Nelson, M. A., Werner-Washburne, M., Selitrennikoff, C. P., Kinsey, J. A., Braun, E. L., Zelter, A., Schulte, U., Kothe, G. O., Jedd, G., Mewes, W., Staben, C., Marcotte, E., Greenberg, D., Roy, A., Foley, K., Naylor, J., Stange-Thomann, N., Barrett, R., Gnerre, S., Kamal, M., Kamvysselis, M., Mauceli, E., Bielke, C., Rudd, S., Frishman, D., Krystofova, S., Rasmussen, C., Metzenberg, R. L., Perkins, D. D., Kroken, S., Cogoni, C., Macino, G., Catcheside, D., Li, W., Pratt, R. J., Osmani, S. A., DeSouza, C. P., Glass, L., Orbach, M. J., Berglund, J. A., Voelker, R., Yarden, O., Plamann, M., Seiler, S., Dunlap, J., Radford, A., Aramayo, R., Natvig, D. O., Alex, L. A., Mannhaupt, G., Ebbole, D. J., Freitag, M., Paulsen, I., Sachs, M. S., Lander, E. S., Nusbaum, C., and Birren, B. (2003) The genome sequence of the filamentous fungus Neurospora crassa, Nature, 422, 859–868.PubMedGoogle Scholar
  36. 36.
    Dunlap, J. C., Borkovich, K. A., Henn, M. R., Turner, G. E., Sachs, M. S., Glass, N. L., McCluskey, K., Plamann, M., Galagan, J. E., Birren, B. W., Weiss, R. L., Townsend, J. P., Loros, J. J., Nelson, M. A., Lambreghts, R., Colot, H. V., Park, G., Collopy, P., Ringelberg, C., Crew, C., Litvinkova, L., DeCaprio, D., Hood, H. M., Curilla, S., Shi, M., Crawford, M., Koerhsen, M., Montgomery, P., Larson, L., Pearson, M., Kasuga, T., Tian, C., Basturkmen, M., Altamirano, L., and Xu, J. (2007) Enabling a community to dissect an organism: overview of the Neurospora functional genomics project, Adv. Genet., 57, 49–96.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Seiler, S., and Plamann, M. (2003) The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa, Mol. Biol. Cell, 14, 4352–4364; doi: 10.1091/mbc.E02-07-0433.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Freitag, M., and Giuffetti, L. M. (2001) Expression and visualization of green fluorescent protein (GFP) in Neurospora crassa, Fungal Genet. Newsl., 48, 15–19.Google Scholar
  39. 39.
    Freitag, M., Hickey, P. C., Raju, N. B., Selker, E. U., and Read, N. D. (2004) GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa, Fungal Genet. Biol., 41, 897–910.PubMedGoogle Scholar
  40. 40.
    Fuchs, F., Prokisch, H., Neupert, W., and Westermann, B. (2002) Interaction of mitochondria with microtubules in the filamentous fungus Neurospora crassa, J. Cell Sci., 115, 1931–1937.PubMedGoogle Scholar
  41. 41.
    Harold, F. M. (2005) Molecules into cells: specifying spatial architecture, Microbiol. Mol. Biol. Rev., 69, 544–564; doi: 10.1128/MMBR.694.544-564.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Potapova, T. V. (2006) Tip growth in Neurospora crassa, Biol. Membr. (Moscow), 23, 436–452.Google Scholar
  43. 43.
    Lew, R. R. (2011) How does a hypha grow? The biophysics of pressurized growth in fungi, Nat. Rev. Microbiol., 9, 509–518.PubMedGoogle Scholar
  44. 44.
    Harold, F. M. (1990) To shape a cell: an inquiry into the causes of morphogenesis of microorganisms, Microbiol. Rev., 54, 381–431.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Harold, F. M. (2002) Force and compliance: rethinking morphogenesis in walled cells, Fungal Genet. Biol., 37, 271–282.PubMedGoogle Scholar
  46. 46.
    Heath, I. B. (1994) The cytoskeleton in hyphal growth, organelle movements, and mitosis, in The Mycota, Vol. I. Growth, Differentiation and Sexuality (Wessels, J. G. H., and Meinhardt, E., eds.) Springer Verlag, Berlin, pp. 43–65.Google Scholar
  47. 47.
    Koch, A. L. (1994) The problem of hyphal growth in streptomycetes and fungi, J. Theor. Biol., 171, 137–150.Google Scholar
  48. 48.
    Wessels, J. G. H. (1986) Cell wall synthesis in apical hyphal growth, Int. Rev. Cytol., 104, 37–79.Google Scholar
  49. 49.
    Wessels, J. G. H. (1993) Wall growth, protein excretion and morphogenesis in fungi, New Phytol., 123, 397–413.Google Scholar
  50. 50.
    Nelson, W. J. (2003) Adaptation of core mechanisms to generate cell polarity, Nature, 422, 766–774; doi: 10.1038/nature01602.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Harris, S. D., and Momany, M. (2001) Polarity in filamentous fungi: moving beyond the yeast paradigm, Fungal Genet. Biol., 41, 391–400.Google Scholar
  52. 52.
    Riquelme, M., Robertson, R. W., McDaniel, D. P., and Bartnicki-Garcia, S. (2002) The effects of ropy-1 mutation on cytoplasmic organization and intracellular motility in mature hyphae of Neurospora crassa, Fungal Genet. Biol., 37, 171–179.PubMedGoogle Scholar
  53. 53.
    Riquelme, M., Bartnicki-Garcia, S., Gonzales-Prieto, J. M., Sanchez-Leon, E., Verdin-Ramos, J. A., Beltran-Aguilar, A., and Freitag, M. (2007) Spitzenkorper localization and intracellular traffic of GFP-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa, Eukaryot. Cell, 6, 1853–1864.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Verdin, J., Bartnicki-Garcia, S., and Riquelme, M. (2009) Functional stratification of the Spitzenkorper of Neurospora crassa, Mol. Microbiol., 74, 1044–1053.PubMedGoogle Scholar
  55. 55.
    Delgado-Alvarez, D. L., Callejas, O. A., Gomez, N., Freitag, M., Robertson, R. W., Smith, L. G., and Mourino-Perez, R. R. (2010) Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa, Fungal Genet. Biol., 47, 573–586.PubMedGoogle Scholar
  56. 56.
    Bartnicki-Garcia, S., Bartnicki, D. D., and Gierz, G. (1995) Determinants of fungal cell wall morphology: the vesicle supply center, Can. J. Bot., 73(Suppl. 1), S372–S378.Google Scholar
  57. 57.
    Harold, F. M. (1997) How hyphae grow: morphogenesis explained, Protoplasma, 197, 137–147.Google Scholar
  58. 58.
    Bartnicki-Garcia, S., Bracker, C. E., Gierz, G., Lopez-Franco, R., and Lu, H. (2000) Mapping the growth of fungal hyphae: orthogonal cell wall expansion during tip growth and the role of turgor, Biophys. J., 79, 2382–2390.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Gierz, G., and Bartnicki-Garcia, S. (2001) A three-dimensional model of fungal morphogenesis based on the vesicle supply center concept, J. Theor. Biol., 208, 151–164.PubMedGoogle Scholar
  60. 60.
    Riquelme, M., Gierz, G., and Bartnicki-Garcia, S. (2000) Dynein and dynactin deficiencies affect the formation and function of the Spitzenkorper and distort hyphal morphogenesis of Neurospora crassa, Microbiology, 146, 1743–1752.PubMedGoogle Scholar
  61. 61.
    Kropf, D. L. (1994) Cytoskeletal control of cell polarity in a plant zygote, Dev. Biol., 165, 361–371.PubMedGoogle Scholar
  62. 62.
    Robinson, K. R., Wozniak, M., Pu, R., and Messerli, M. (1999) Symmetry breaking in the zygotes of the fucoid algae: controversies and recent progress, Curr. Top. Dev. Biol., 44, 101–125.PubMedGoogle Scholar
  63. 63.
    Silverman-Gavrila, L. B., and Lew, R. R. (2001) Regulation of the tip-high [Ca2+] gradient in growing hyphae of the fungus Neurospora crassa, Eur. J. Cell. Biol., 80, 379–390.PubMedGoogle Scholar
  64. 64.
    Jackson, S. L., Morris, E. J. S., and Garrill, A. (2001) Hyphal branching and the induction of cell polarity, in Cell Biology of Plant and Fungal Tip Growth (Geitmann, A., Cresti, M., and Heath, I. B., eds.) NATO Science Series, IOS Press, Amsterdam-Berlin-Oxford-Tokyo-Washington, pp. 69–79.Google Scholar
  65. 65.
    Torralba, S., and Heath, I. B. (2001) Cytoskeletal and Ca2+ regulation of hyphal tip growth and initiation, Curr. Top. Dev. Biol., 51, 135–187.PubMedGoogle Scholar
  66. 66.
    Levina, N. N., Lew, R. R., and Heath, I. B. (1994) Cytoskeletal regulation of ion channel distribution in the tip-growing organism Saprolegnia ferax, J. Cell Sci., 107, 127–134.PubMedGoogle Scholar
  67. 67.
    Dutta, R., and Robinson, K. R. (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts, Plant Physiol., 135, 1398–1406.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Lew, R. R. (1999) Comparative analysis of Ca2+ and H+ flux magnitude and location along growing hyphae of Saprolegnia ferax and Neurospora crassa, Eur. J. Cell Biol., 78, 892–902.PubMedGoogle Scholar
  69. 69.
    Lew, R. R. (1998) Mapping fungal channel distributions, Fungal Genet. Biol., 24, 69–76.PubMedGoogle Scholar
  70. 70.
    Levina, N. N., Lew, R. R., Hyde, G. J., and Heath, I. B. (1995) The roles of calcium ions and plasma membrane ion channels on hyphal tip growth of Neurospora crassa, J. Cell Sci., 108, 3405–3417.PubMedGoogle Scholar
  71. 71.
    Silverman-Gavrila, L. B., and Lew, R. R. (2000) Calcium and tip growth in Neurospora crassa, Protoplasma, 213, 203–217.Google Scholar
  72. 72.
    Silverman-Gavrila, L. B., and Lew, R. R. (2002) An IP3-activated Ca2+ channel regulates fungal tip growth, J. Cell Sci., 115, 5013–5025.PubMedGoogle Scholar
  73. 73.
    Levina, N. N., and Lew, R. R. (2006) The role of tip-localized mitochondria in hyphal growth, Fungal Genet. Biol., 43, 65–74.PubMedGoogle Scholar
  74. 74.
    Bowman, B. J., Abreu, S., Margoles-Clark, E., Drascovic, M., and Bowman, E. J. (2011) Role of four calcium transport proteins, encoded by nca-1, nca-2, nca-3 and cax, in maintaining intracellular calcium levels in Neurospora crassa, Eukaryot. Cell, 10, 654–661.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Hilfiker, S., Greengard, P., and Augustine, G. J. (1999) Coupling calcium to SNARE-mediated synaptic vesicle fusion, Nature Neurosci., 2, 104–106.PubMedGoogle Scholar
  76. 76.
    Gupta, G. D., and Heath, I. B. (2000) A tip-high gradient of a putative plasma membrane SNARE approximates the exocytotic gradient in hyphal apices of the fungus Neurospora crassa, Fungal Genet. Biol., 29, 187–199.PubMedGoogle Scholar
  77. 77.
    Gupta, G. D., Free, S. J., Levina, N. N., Keranen, S., and Heath, I. B. (2003) Two divergent plasma membrane syntaxin-like SNAREs, nsyn and nsyn2, contribute to hyphal tip growth and other developmental processes in Neurospora crassa, Fungal Genet. Biol., 40, 271–286.PubMedGoogle Scholar
  78. 78.
    Money, N. P. (2001) Functions and evolutionary origin of hyphal turgor pressure, in Cell Biology of Plant and Fungal Tip Growth (Geitmann, A., Cresti, M., and Heath, I. B., eds.) NATO Science Series, IOS Press, Amsterdam-Berlin-Oxford-Tokyo-Washington, pp. 161–170.Google Scholar
  79. 79.
    Money, N. P. (1997) Wishful thinking of turgor revisited: the mechanics of fungal growth, Fungal Genet. Biol., 21, 173–187.Google Scholar
  80. 80.
    Lew, R. R., and Nasserifar, S. (2009) Transient responses during hyperosmotic shock in the filamentous fungus Neurospora crassa, Microbiology, 155, 903–911.PubMedGoogle Scholar
  81. 81.
    Lew, R. R., Levina, N. N., Shabala, L., Anderca, M. I., and Shabala, S. N. (2006) Role of mitogen-activated protein kinase cascade in ion flux-mediated turgor regulation in fungi, Eukaryot. Cell, 5, 480–487.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Lew, R. R., and Levina, N. N. (2007) Turgor regulation in the osmosensitive cut mutant of Neurospora crassa, Microbiology, 152, 1530–1537.Google Scholar
  83. 83.
    Ochial, N., Fujimura, M., Motoyama, T., Ichiishi, A., Usami, R., Horikoshi, K., and Yamaguchi, I. (2001) Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa, Pest Manag. Sci., 57, 437–442.Google Scholar
  84. 84.
    Motoyama, T., Ohira, K., Kadokura, K., Ichiishi, A., Fujimura, M., and Kudo, T. (2005) An Os-1 family histidine kinase from a filamentous fungus confers fungicide-sensitivity to yeast, Curr. Genet., 47, 298–306.PubMedGoogle Scholar
  85. 85.
    Fugimura, M., Ochial, N., Ichiishi, A., Usami, R., Horikoshi, K., and Yamaguchi, I. (2000) Sensitivity to phenylpyrrol fungicides and abnormal glycerol accumulation in Os and Cut mutant strains of Neurospora crassa, J. Pesticide Sci., 25, 31–36.Google Scholar
  86. 86.
    Lew, R. R. (2010) Turgor and net ion flux responses to activation of the osmotic MAP kinase cascade by fludioxonil in the filamentous fungus Neurospora crassa, Fungal Genet. Biol., 47, 721–726.PubMedGoogle Scholar
  87. 87.
    Colot, H. V., Park, G., Turner, G. E., Ringelberg, C., Crew, C. M., Litvinkova, L., Weiss, R. L., Borkovich, K. A., and Dunlap, J. C. (2006) A high throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors, Proc. Natl. Acad. Sci. USA, 103, 10352–10357.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Lew, R. R., Abbas, Z., Anderca, M., and Free, S. J. (2008) Phenotype of a mechanosensitive channel mutant, mid-1, in a filamentous fungus Neurospora crassa, Eukaryot. Cell, 7, 647–655.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Lew, R. R., and Kapishon, V. (2009) Ptk2 contributes to osmoadaptation in the filamentous fungus Neurospora crassa, Fungal Genet. Biol., 46, 949–955.PubMedGoogle Scholar
  90. 90.
    Heath, I. B., and Steinberg, G. (1999) Mechanisms of hyphal tip growth: tube dwelling amebae revisited, Fungal Genet. Biol., 28, 79–93.PubMedGoogle Scholar
  91. 91.
    Emerson, S. (1963) Slime, a plasmodial variant of Neurospora crassa, Genetica, 34, 162–182.Google Scholar
  92. 92.
    Perkins, D. D., Radford, A., Newmeyer, D., and Bjorkman, M. (1982) Chromosomal loci of Neurospora crassa, Microbiol. Rev., 46, 426–570.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Leal-Morales, C. A., and Ruiz-Herrera, J. (1985) Alterations in the biosynthesis of chitin and glucan in the slime mutant of Neurospora crassa, Exp. Mycol., 9, 28–38.Google Scholar
  94. 94.
    Bartnicki-Garcia, S., Btacker, C. E., Lippman, E., and Ruiz-Herrera, J. (1984) Chitosomes from the wall-less “slime” mutant of Neurospora crassa, Arch. Microbiol., 139, 105–112.PubMedGoogle Scholar
  95. 95.
    Hirokawa, N., Noda, Y., and Okada, Y. (1998) Kinesin and dynein superfamily proteins in organelle transport and cell division, Curr. Opin. Cell Biol., 10, 60–73.PubMedGoogle Scholar
  96. 96.
    Hodge, T., and Cope, M. J. (2000) A myosin family tree, J. Cell Sci., 113, 3353–3354.PubMedGoogle Scholar
  97. 97.
    Kim, A. J., and Endow, S. A. (2000) A kinesin family tree, J. Cell Sci., 113, 3681–3682.PubMedGoogle Scholar
  98. 98.
    Asai, D. J., and Koonce, M. P. (2001) The dynein heavy chain: structure, mechanics and evolution, Trends Cell Biol., 11, 196–202.PubMedGoogle Scholar
  99. 99.
    Pollard, T. D. (2001) Genomics, the cytoskeleton and motility, Nature, 409, 842–843.PubMedGoogle Scholar
  100. 100.
    Drewes, G., Ebneth, A., and Mandelkow, E. M. (1998) MAPs, MARKs and microtubule dynamics, Trends Biochem. Sci., 23, 307–311.PubMedGoogle Scholar
  101. 101.
    Kreis, T., and Vale, R. (1999) Guidebook to the Cytoskeletal and Motor Proteins, 2nd Edn., Oxford University Press, Oxford, UK.Google Scholar
  102. 102.
    Schmidt, A., and Hall, M. N. (1998) Signaling to the actin cytoskeleton, Annu. Rev. Cell Dev. Biol., 14, 305–338.PubMedGoogle Scholar
  103. 103.
    Riquelme, M., Gonzalez-Prieto, J. M., Sanchez-Leon, E., Freitag, M., and Bartnicki-Garcia, S. (2006) Localization of chitin synthases in living hyphae of Neurospora crassa, in 8th Europ. Conf. Fung. Gen. Book of Abstracts.Google Scholar
  104. 104.
    Held, M., Edwards, C., and Nicolau, D. V. (2010) Temporal and spatial in vivo optical analysis of microtubules in Neurospora crassa, in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues, VIII, SPIE, San Francisco, pp. 75680V.Google Scholar
  105. 105.
    Sugden, K. E. P., Evans, M. R., Poon, W. C. K., and Read, N. D. (2007) Model of hyphal tip growth involving micro-tubule-based transport, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 75, 031909.PubMedGoogle Scholar
  106. 106.
    Yaffe, M. P. (1999) The machinery of mitochondrial inheritance and behavior, Science, 283, 1493–1497.PubMedGoogle Scholar
  107. 107.
    Bereihter-Hahn, J. (1990) Behavior of mitochondria in the living cell, Int. Rev. Cytol., 122, 1–63.Google Scholar
  108. 108.
    Gyoeva, F. K. (2005) Interaction of molecular motors, Mol. Biol., 39, 709–718.Google Scholar
  109. 109.
    Chada, S. R., and Hollenbeck, P. J. (2003) Mitochondrial movement and positioning in axons: the role of growth factor signaling, J. Exp. Biol., 206, 1985–1992.PubMedGoogle Scholar
  110. 110.
    Westermann, B. (2008) Molecular machinery of mitochondrial fusion and fission, J. Biol. Chem., 283, 13501–13505.PubMedGoogle Scholar
  111. 111.
    Potapova, T. V., and Boitsova, L. Y. (1997) Structure, function, control. Possibilities of experimental analysis in groups of unexcitable cells connected by permeable contacts, Biol. Membr., 14, 661–670.Google Scholar
  112. 112.
    Potapova, T. V. (2004) Intercellular interactions in Neurospora crassa hyphae — twenty years afterwords, Biol. Membr., 21, 163–191.Google Scholar
  113. 113.
    Aslanidi, K. B., Aslanidi, O. V., Vachadze, D. M., Mornev, O. A., Potapova, T. V., Chailakhyan, L. M., and Shtemantyan, E. G. (1997) Mathematical model of electric phenomena during polarized growth of N. crassa hypha, Biofizika, 42, 941–951.Google Scholar
  114. 114.
    Potapova, T. V., Boitzova, L. Ju., Golyshev, S. A., and Popinako, A. V. (2013) Organization of mitochondria in growing hyphae of Neurospora crassa, Tsitologiya, 55, 828–836.Google Scholar
  115. 115.
    Haugland, R. P. (2002) Handbook of Fluorescent Probes, 9th Edn., Molecular Probes Inc., Eugene, Oregon.Google Scholar
  116. 116.
    Chernyak, B. V., Izyumov, D. S., Lyamzaev, K. G., Pashkovskaya, A. A., Pletjushkina, O. Y., Antonenko, Y. N., Sakharov, D. V., Wirtz, K. W. A., and Skulachev, V. P. (2006) Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress, Biochim. Biophys. Acta, 1757, 525–534.PubMedGoogle Scholar
  117. 117.
    Gerstenberger, J. P., Occhipinti, P., and Gladfelter, A. S. (2012) Heterogeneity in mitochondrial morphology and membrane potential is independent of the nuclear division cycle in multinucleate fungal cells, Eukaryot. Cell Mar., 11, 353–367.Google Scholar
  118. 118.
    Kuznetsov, A. V., and Margreiter, R. (2009) Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity, Int. J. Mol. Sci., 10, 1911–1929.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Potapova, T. V., Alekseevsky, T. A., and Boitsova, L. Y. (2008) Tip growth in Neurospora crassa under conditions of glucose deficiency, Biol. Membr. (Moscow), 25, 171–177.Google Scholar
  120. 120.
    Davidson, F. A., Boswell, G. P., Fischer, M. W. F., Heaton, L., Hofstadler, D., and Roper, M. (2011) Mathematical modeling of fungal growth and function, IMA Fungus, 2, 33–37; doi: 10.5598/imafungus.2011.02.01.06.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Moore, D., McNulty, L. J., and Meskauskas, A. (2005) Branching in fungal hyphae and fungal tissues: growing mycelia in a desktop computer, in Branching Morphogenesis (Davies, J., ed.) Landes Bioscience/Eurekah.com, Chap. 4, pp. 1–15.Google Scholar
  122. 122.
    Trinci, A. P. J. (1974) A study of the kinetics of hyphal extension and branch initiation of fungal mycelia, J. Gen. Microbiol., 81, 225–236.PubMedGoogle Scholar
  123. 123.
    Katz, D., Goldshtein, D., and Rosenberger, R. F. (1972) Model for branch initiation in Aspergillus nidulans based on measurement of growth parameters, J. Bacter., 109, 1097–1100.Google Scholar
  124. 124.
    Prosser, J. I., and Trinci, A. P. J. (1979) A model for hyphal growth and branching, J. Gen. Microbiol., 111, 153–164.PubMedGoogle Scholar
  125. 125.
    Kotov, V., and Reshetnikov, S. V. (1990) A stochastic model for early mycelial growth, Mycol. Res., 6, 577–586.Google Scholar
  126. 126.
    Yang, H., King, R., Reichl, U., and Gilles, E. D. (1992) Mathematical model for apical growth, septation and branching of mycelial microorganisms, Biotechnol. Bioeng., 39, 49–58.PubMedGoogle Scholar
  127. 127.
    Reynaga-Pena, C. G., Gierz, G., and Bartnicki-Garcia, S. (1997) Analysis of the role of the Spitzenkorper in fungal morphogenesis by computer simulation of apical branching in Aspergillus niger, Proc. Natl. Acad. Sci. USA, 94, 9096–9101.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Aslanidi, K. B., and Panfilov, A. V. (1986) The Boyle-Conway model including the effect of an electrogenic pump for nonexitable cells, Math. Biosci., 79, 45–54.Google Scholar
  129. 129.
    Aslanidi, K. B., Potapova, T. V., and Chailakhyan, L. M. (1988) Energy transport across highly permeable contact membranes, Biol. Membr. (Moscow), 5, 613–621.Google Scholar
  130. 130.
    Aslanidi, K. B., Boitzova, L. Ju., Chailakhyan, L. M., Kublik, L. N., Marachova, I. I., Potapova, T. V., and Vinogradova, T. N. (1991) Energetic cooperation via ionpermeable junctions in mixed cell cultures, FEBS Lett., 283, 295–297.PubMedGoogle Scholar
  131. 131.
    Aslanidi, K. B., Boitzova, L. Ju., Vinogradova, T. N., Kublik, L. N., Marakhova, I. I., Mokh, V. N., Potapova, T. V., Trepakova, E. K., and Chailakhyan, L. M. (1991) Maintaining ion-osmotic homeostasis in multicellular systems of animals: the role of permeable contacts, Biol. Membr. (Moscow), 8, 837–853.Google Scholar
  132. 132.
    Prokisch, H., Neupert, W., and Westermann, B. (2000) Role of MMM1 in maintaining mitochondrial morphology in Neurospora crassa, Mol. Biol. Cell, 11, 2961–2971.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Kato, F., Kurashima, K., Chae, M., Sawada, S., Hatakeyama, S., Tanaka, S., and Inoue, H. (2010) Deletion of a novel F-Box protein, MUS-10, in Neurospora crassa leads to altered mitochondrial morphology, instability of mtDNA and senescence, Genetics, 185, 1257–1269; doi: 10.1534/genetics.110.117200.PubMedCentralPubMedGoogle Scholar
  134. 134.
    Wideman, J. G., Go, N. E., Klein, A., Redmond, E., Lackey, S. W. K., Tao, T., Kalbacher, H., Rapaport, D., Neupert, W., and Nargang, F. E. (2012) Roles of the Mdm1, Tom7, Mdm12, and Mmm1 proteins in the assembly of mitochondrial outer membrane proteins in Neurospora crassa, Mol. Biol. Cell, 21, 1725–1736; doi: 10.1091/mbc.E09-10-084.PMCID: PMC2869378.Google Scholar
  135. 135.
    Smolyaninov, V. V., and Potapova, T. V. (2003) Assessment of the critical length of a fragment of Neurospora crassa hypha, Biol. Membr. (Moscow), 20, 304–312.Google Scholar
  136. 136.
    Bohm, K. J., Nikolaos, E., Mavromatos, N. E., Michette, A., Stracke, R., and Unger, E. (2005) Movement and alignment of microtubules in electric fields and electric-dipole-moment estimates, Electromag. Biol. Med., 24, 319–330.Google Scholar
  137. 137.
    Dujovne, I., van den Heuvel, M., Shen, Y., de Graaff, M., and Dekker, C. (2008) Velocity modulation of microtubules in electric fields, Nano Lett., 8, 4217–4220.PubMedGoogle Scholar
  138. 138.
    Read, N. D., and Hickey, P. C. (2001) The vesicle trafficking network and tip growth in fungal hyphae, in Cell Biology of Plant and Fungal Tip Growth (Geitmann, A., Cresti, M., and Heath, I. B., eds.) NATO Science Series, IOS Press, Amsterdam-Berlin-Oxford-Tokyo-Washington, pp. 137–148.Google Scholar
  139. 139.
    Ashford, A. E. (1998) Dynamic pleiomorphic vacuole systems: are they endosomes and transport compartments in fungal hyphae, Adv. Bot. Res., 28, 120–159.Google Scholar
  140. 140.
    Goodwin, B. C. (1993) Development as a robust natural process, in Thinking about Biology (Syein, W., and Varela, F. J., eds.) SFI studies in the sciences of complexity, lecture notes V. III, Addison-Wesley, pp. 123–148.Google Scholar
  141. 141.
    Goodwin, B. C. (1986) What are the causes of morphogenesis, BioEssays, 3, 32–36.Google Scholar
  142. 142.
    Goodwin, B. C. (1997) General dynamics of morphogenesis, in Physical Theory in Biology: Foundations and Explorations (Lumsden, C. J., Brandts, W. A., and Trainor, L. E. H., eds.) World Scientific, Singapore-New Jersey-London-Hong Kong, pp. 187–207.Google Scholar
  143. 143.
    Goodwin, B. C., Sibatani, A., and Webster, G. (eds.) (1989) Dynamic Structures in Biology, Edinburgh University Press, Edinburgh.Google Scholar
  144. 144.
    Brand, A., and Gow, N. A. R. (2009) Mechanisms of hypha orientation of fungi, Curr. Opin. Microbiol., 12, 350–357.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Ugolev, A. M. (1986) Natural Technologies of Biological Systems [in Russian], Nauka, Leningrad.Google Scholar
  146. 146.
    Potapova, T. V., and Aslanidi, K. B. (1995) Energy coupling of adjacent cells as an universal function of cell-to-cell permeable junctions, Progress Cell Res., 4, 53–56.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations