Biochemistry (Moscow)

, Volume 79, Issue 7, pp 581–592 | Cite as

Age-related obesity is a heritage of the evolutionary past

  • E. V. TereshinaEmail author
  • S. I. Ivanenko


In the process of human aging, an increase in the total amount of fat is observed mainly due to accumulation of lipids in non-adipose tissues. Insulin resistance, provoked by the intracellular accumulation of triglycerides, is often associated with development of such age-related diseases as atherosclerosis, type 2 diabetes, cancer, osteoporosis, and also with systemic inflammation and lipo- and glucose toxicity. Accumulation of lipids and lipophilic compounds is a biological phenomenon common for both prokaryotes and eukaryotes. Initially, it arose as an adaptation to starvation and shortage of nitrogen-containing nutrients, but later it converted into a depot of membrane material, needed on recommencement of cell division. In rodents and humans, the accumulation of non-metabolized fat in non-adipose tissues can be regarded as an adaptation to changes in the internal medium on a certain stage of ontogenesis as a result of age-related dysfunction of adipose tissue.

Key words

lipid accumulation adaptation adipose tissue lipotoxicity aging 



AMP kinase


acyl-CoA diglyceride acyltransferase


fatty acids


fatty acid transporter


fatty acid transporter-binding protein


fatty acid transport protein


insulin-like growth factor-1


peroxisome proliferator-activated receptor


stearoyl-CoA desaturase


sterol regulatory element-binding protein-1c


very low density lipoproteins


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez, H. M., Pucci, O. H., and Steinbuchel, A. (1997) Lipid storage compounds in marine bacteria, Appl. Microbiol. Biotechnol., 47, 132–139.Google Scholar
  2. 2.
    Bryn, K., Jantzen, E., and Bovre, K. (1977) Occurrence and patterns of waxes in Neisseriaceae, J. Gen. Microbiol., 102, 33–43.PubMedGoogle Scholar
  3. 3.
    Brieger, E. M., and Glauert, A. M. (1956) Spore-like structures in the tubercle bacillus, Nature, 178, 544–550.PubMedGoogle Scholar
  4. 4.
    Packter, N. M., and Olukoshi, E. R. (1995) Ultrastructural studies of neutral lipid localization in Streptomyces, Arch. Microbiol., 164, 420–427.PubMedGoogle Scholar
  5. 5.
    Fixter, L. M., Nagi, M. N., McCormack, J. G., and Fewson, C. A. (1986) Structure, distribution and function of wax esters in Acinetobacter calcoaceticus, J. Gen. Microbiol., 132, 3147–3157.Google Scholar
  6. 6.
    Alvarez, H. M., Kalscheuer, R., and Steinbuchel, A. (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126, Appl. Microbiol. Biotechnol., 54, 218–223.PubMedGoogle Scholar
  7. 7.
    Alvarez, H. M., Mayer, F., Fabritius, D., and Steinbuchel, A. (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630, Arch. Microbiol., 165, 377–386.PubMedGoogle Scholar
  8. 8.
    Kaiser, D. (2004) Signaling in myxobacteria, Annu. Rev. Microbiol., 58, 75–98.PubMedGoogle Scholar
  9. 9.
    Hoiczyk, E., Ring, M. W., McHugh, C. A., Schwar, G., Bode, E. L., Krug, D., Altmeyer, M. O., Lu, J. Z., and Bode, H. E. (2009) Lipid body formation plays a central role in cell fate determination during developmental differentiation of Myxococcus xanthus, Mol. Microbiol., 74, 497–517.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Gonzalez-Pastor, J. E., Hobbs, E. C., and Losick, R. (2003) Cannibalism by sporulating bacteria, Science, 301, 510–513.PubMedGoogle Scholar
  11. 11.
    Ring, M. W., Schwar, G., Thiel, V., Dickschat, J. S., Kroppenstedt, R. M., Schulz, S., and Bode, H. B. (2006) Novel iso-branched ether lipids as specific markers of developmental sporulation in the myxobacterium Myxococcus xanthus, J. Biol. Chem., 281, 36691–36700.PubMedGoogle Scholar
  12. 12.
    Waltermann, M., Hinz, A., Robenek, H., Troyer, D., Reichelt, R., Malkus, U., Galla, H. J., Kalscheuer, R., Stoveken, T., Landenberg, P., and Steinbuchel, A. (2005) Mechanism of lipid body formation in bacteria: how bacteria fatten up, Mol. Microbiol., 55, 750–763.PubMedGoogle Scholar
  13. 13.
    Kennedy, B. K., Austriaco, N. R., Jr., and Guarente, L. (1994) Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span, J. Cell Biol., 127, 1985–1993.PubMedGoogle Scholar
  14. 14.
    Knorre, D. A., Kulemzina, I. A., Sorokin, M. I., Kochmak, S. A., Bocharova, N. A., Sokolov, S. S., and Severin, F. F. (2010) Sir2-dependent daughter-to-mother transport of the damaged proteins in yeast is required to prevent high stress sensitivity of the daughters, Cell Cycle, 9, 4501–4505.PubMedGoogle Scholar
  15. 15.
    Lin, S. S., Manchester, J. K., and Gordon, J. I. (2001) Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae, J. Biol. Chem., 276, 36000–36007.PubMedGoogle Scholar
  16. 16.
    Werner-Washburne, M., Braun, E. L., Crawford, M. E., and Peck, V. M. (1996) Stationary phase in Saccharomyces cerevisiae, Mol. Microbiol., 19, 1159–1166.PubMedGoogle Scholar
  17. 17.
    Ashrafi, K., Sinclair, D., Gordon, J. I., and Guarente, L. (1999) Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 96, 9100–9105.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Lin, S. J., Kaeberlein, M., Andalis, A. A., Sturtz, L. A., Defossez, P. A., Culotta, V. C., Fink, G. R., and Guarente, L. (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration, Nature, 418, 344–348.PubMedGoogle Scholar
  19. 19.
    Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., and Longo, V. D. (2005) Sir2 blocks extreme life-span extension, Cell, 123, 655–667.PubMedGoogle Scholar
  20. 20.
    Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L.-L., Diaspro, A., Dossen, J.-W., Gralla, E. B., and Longo, W. D. (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae, J. Cell Biol., 166, 1055–1067.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Rockenfeller, P., Ring, J., Muschett, V., Beranek, A., Buettner, S., Carmona-Gutierrez, D., Eisenberg, T., Khoury, C., Rechberger, G., Kohlwein, S. D., Kroemer, G., and Madeo, F. (2010) Fatty acids trigger mitochondrion-dependent necrosis, Cell Cycle, 9, 2836–2842.PubMedGoogle Scholar
  22. 22.
    Ruckenstuhl, C., Carmona-Gutierrez, D., and Madeo, F. (2010) The sweet taste of death: glucose triggers apoptosis during yeast chronological aging, Aging (Albany NY), 2, 643–649.Google Scholar
  23. 23.
    Nguyen, L. N., and Nosanchuk, J. D. (2011) Lipid droplet formation protects against gluco/lipotoxicity in Candida parapsilosis: an essential role of fatty acid desaturase, Cell Cycle, 10, 3159–3167.PubMedGoogle Scholar
  24. 24.
    Herker, E., Jungwirth, H., Lehmann, K. A., Maldener, C., Frohlich, K. U., Wissing, S., Buttner, S., Fehr, M., Sigrist, S., and Madeo, F. (2004) Chronological aging leads to apoptosis in yeast, J. Cell Biol., 164, 501–507.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Ahn, S. H., Cheung, W. L., Hsu, J. Y., Diaz, R. L., Smith, M. M., and Allis, C. D. (2005) Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae, Cell, 120, 25–36.PubMedGoogle Scholar
  26. 26.
    Madeo, F., Carmona-Gutierrez, D., Ring, J., Buttner, S., Eisenberg, T., and Kroemer, G. (2009) Caspase-dependent and caspase-independent cell death pathways in yeast, Biochem. Biophys. Res. Commun., 382, 227–231.PubMedGoogle Scholar
  27. 27.
    Fabrizio, P., Liou, L. L., and Moy, V. N. (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast, Genetics, 163, 35–46.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Fabrizio, P., Pozza, F., and Pletcher, S. D. (2001) Regulation of longevity and stress resistance by Sch9 in yeast, Science, 292, 288–290.PubMedGoogle Scholar
  29. 29.
    Longo, V. D., and Finch, C. E. (2003) Review evolutionary medicine: from dwarf model systems to healthy centenarians? Science, 299, 1342–1346.PubMedGoogle Scholar
  30. 30.
    Athenstaedt, K., and Daum, G. (2003) The life cycle of neutral lipids: synthesis, storage and degradation, J. Biol. Chem., 278, 23317–23323.PubMedGoogle Scholar
  31. 31.
    Athenstaedt, K., and Daum, G. (2006) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae, Cell Mol. Life Sci., 63, 1355–1369.PubMedGoogle Scholar
  32. 32.
    Leber, R., Zinser, E., Zellnig, G., Paltauf, F., and Daum, G. (1994) Characterization of lipid particles of the yeast Saccharomyces cerevisiae, Yeast, 10, 1421–1428.PubMedGoogle Scholar
  33. 33.
    Taylor, F. R., and Parks, L. W. (1978) Metabolic interconversion of free sterols and steryl esters in Saccharomyces cerevisiae, J. Bacteriol., 136, 531–537.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Murphy, D. J., and Vance, J. (1999) Mechanisms of lipid body formation, Trends Biochem. Sci., 24, 109–115.PubMedGoogle Scholar
  35. 35.
    Kim, K. H., and Lee, M. S. (2013) Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism, Rev. Endocrin. Metab. Disord., 14, 311–329.Google Scholar
  36. 36.
    Bolt, A. M., and Klimecki, W. T. (2012) Autophagy in toxicology: self-consumption in stress and plenty, J. Appl. Toxicol., 32, 465–479.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Riemens, S. C., Sluiter, W. J., and Dullaart, R. P. (2000) Enhanced escape of non-esterified FA from tissue uptake: its role in impaired insulin-induced lowering of total rate of appearance in obesity and type II diabetes mellitus, Diabetologia, 43, 416–426.PubMedGoogle Scholar
  38. 38.
    Evans, K., Burdge, G. C., Wootton, S. A., Clark, M. L., and Frayn, K. N. (2002) Regulation of dietary fatty acid entrapment in subcutaneous adipose tissue and skeletal muscle, Diabetes, 51, 2684–2690.PubMedGoogle Scholar
  39. 39.
    Heffernan, A. G. (1964) Fatty acid composition of adipose tissue in normal and abnormal subjects, Am. J. Clin. Nutr., 15, 5–10.Google Scholar
  40. 40.
    Insull, W., Jr., and Bartsch, G. E. (1967) Fatty acid composition of human adipose tissue related to age, sex, and race, Am. J. Clin. Nutr., 20, 13–23.PubMedGoogle Scholar
  41. 41.
    Baldeweg, S. E., Golay, A., Natali, A., Balkau, B., Del Prato, S., and Coppack, S. W. (2000) Insulin resistance, lipid and fatty acid concentrations in 867 healthy Europeans, Eur. J. Clin. Invest., 30, 45–52.PubMedGoogle Scholar
  42. 42.
    Laws, A., Hoen, H. M., and Selby, J. V. (1997) Differences in insulin suppression of free fatty acid levels by gender and glucose tolerance status. Relation to plasma triglyceride and apolipoprotein B concentrations. Insulin resistance atherosclerosis study (IRAS) investigators, Arterioscler. Thromb. Vasc. Biol., 17, 64–71.PubMedGoogle Scholar
  43. 43.
    Zorzano, A., Fandos, C., and Palacin, M. (2000) Role of plasma membrane transporters in muscle metabolism, Biochem. J., 349(Suppl.), 667–688.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Bonen, A., Benton, C. R., Campbell, S. E., Chabowski, A., Clarke, D. C., Han, X. X., Glatz, J. F., and Luiken, J. J. (2003) Plasmalemmal fatty acid transport is regulated in heart and skeletal muscle by contraction, insulin and leptin, and in obesity and diabetes, Acta Physiol. Scand., 178, 347–356.PubMedGoogle Scholar
  45. 45.
    Kruszynska, Y. T., Worrall, D. S., and Ofrecio, J. (2002) Fatty acid-induced insulin resistance: decreased muscle PI3K activation but unchanged Akt phosphorylation, J. Clin. Endocrinol. Metab., 87, 226–234; Scholar
  46. 46.
    Miyaoka, K. (2001) CD36 deficiency associated with insulin resistance, Lancet, 357, 686–687.PubMedGoogle Scholar
  47. 47.
    Schoonjans, K., Staels, B., and Auwerx, J. (1996) The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation, Biochim. Biophys. Acta, 1302, 93–109.PubMedGoogle Scholar
  48. 48.
    Forman, B. M., Chen, J., and Evans, R. M. (1997) Hypolipidemic drugs, polyunsaturated FA, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta, Proc. Natl. Acad. Sci. USA, 94, 4312–4317.PubMedCentralPubMedGoogle Scholar
  49. 49.
    Hajri, T., Han, X. X., Bonen, A., and Abumrad, N. A. (2002) Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice, Clin. Invest., 109, 1381–1389.Google Scholar
  50. 50.
    Guillet-Deniau, I., Pichard, A. L., Kone, A., Esnous, C., Nieruchalski, M., Girard, J., and Prip-Buus, C. (2004) Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element-binding-protein1c-dependent pathway, J. Cell Sci., 117, 1937–1944.PubMedGoogle Scholar
  51. 51.
    Coleman, R. A., and Lee, D. P. (2004) Enzymes of triacylglycerol synthesis and their regulation, Prog. Lipid Res., 43, 134–176; Scholar
  52. 52.
    Enoch, H. G., Catala, A., and Strittmatter, P. (1976) Mechanism of rat liver microsomal stearoyl-CoA desaturase: studies of the substrate specificity, enzyme-substrate interactions and the function of lipid, J. Biol. Chem., 251, 5095–5103.PubMedGoogle Scholar
  53. 53.
    Ntambi, J. M. (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated FA and cholesterol, J. Lipid Res., 40, 1549–1558.PubMedGoogle Scholar
  54. 54.
    Dobrzyn, P., Jazurek, M., and Dobrzyn, A. (2010) Stearoyl-CoA desaturase-1 deficiency reduces ceramide synthesis by downregulating serine palmitoyl transferase and increasing β-oxidation in skeletal muscle, Biochim. Biophys. Acta — Bioenergetics, 1797, 1189–1194.Google Scholar
  55. 55.
    Dobrzyn, P., Dobrzyn, A., Miyazaki, M., and Ntambi, J. M. (2010) Stearoyl-CoA desaturase 1 deficiency increases CTP:choline cytidyl transferase translocation into the membrane and enhances phosphatidylcholine synthesis in liver, J. Lipid Res., 51, 2202–2210.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Schmitz-Peiffer, C., Craig, D. L., and Biden, T. J. (1999) Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate, J. Biol. Chem., 274, 24202–24210.PubMedGoogle Scholar
  57. 57.
    Thompson, A. L., and Cooney, G. J. (2000) Acyl-CoA inhibition of hexokinase in rat and human skeletal muscle is a potential mechanism of lipid-induced insulin resistance, Diabetes, 49, 1761–1765.PubMedGoogle Scholar
  58. 58.
    Weigert, C., Brodbeck, K., Staiger, H., Kausch, C., Machicao, F., Haring, H. U., Erwin, D., and Schleicher, E. D. (2004) Palmitate, but not unsaturated FA, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor-B, J. Biol. Chem., 279, 23942–23952.PubMedGoogle Scholar
  59. 59.
    Shimabukuro, M., Zhou, Y.-T., Lee, Y., and Unger, R. H. (1998) Troglitazone lowers islet fat and restores β-cell function of Zucker diabetic fatty rats, J. Biol. Chem., 273, 3547–3550.PubMedGoogle Scholar
  60. 60.
    Cutler, R. G., and Mattson, M. P. (2001) Sphingomyelin and ceramide as regulators of development and lifespan, Mech. Ageing Devel., 122, 895–908.Google Scholar
  61. 61.
    Lightle, S. A., Oakley, J. I., and Nikolova-Karakashian, M. N. (2000) Activation of sphingolipid turnover and chronic generation of ceramide and sphingosine in liver during aging, Mech. Ageing Devel., 120, 111–125.Google Scholar
  62. 62.
    Teusink, B., Voshol, P. J., Dahlmans, V. E., Rensen, P. C., Pijl, H., Romijn, J. A., and Havekes, L. M. (2003) Activation of sphingolipid turnover and chronic generation of ceramide and sphingosine in liver during aging, Diabetes, 52, 614–620.PubMedGoogle Scholar
  63. 63.
    Kirkland, J. L., Tchkonia, T., Pirtskhalava, T., Han, J., and Karagiannides, I. (2002) Adipogenesis and aging: does aging make fat go MAD? Exp. Gerontol., 37, 757–767.PubMedGoogle Scholar
  64. 64.
    Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A. M., and Czaja, M. J. (2009) Autophagy regulates lipid metabolism, Nature, 458, 1131–1135.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Kaushik, S., Rodriguez-Navarro, J. A., Arias, E., Kiffin, R., Sahu, S., Schwartz, G. J., Cuervo, A. M., and Singh, R. (2011) Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance, Cell Metab., 14, 173–183.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Singh, R. (2011) Hypothalamic lipophagy and energetic balance, Aging (Albany NY), 3, 934–942.Google Scholar
  67. 67.
    Hemmingsen, M., Vedel, S., Skafte-Pedersen, P., Sabourin, D., Collas, P., Bruus, H., and Dufvia, M. (2013) The role of paracrine and autocrine signaling in the early phase of adipogenic differentiation of adipose-derived stem cells, PLoS One, 8, e63638, 1–14.PubMedCentralPubMedGoogle Scholar
  68. 68.
    Rosen, E. D., and MacDougald, O. A. (2006) Adipocyte differentiation from the inside out, Nat. Rev. Mol. Cell Biol., 7, 885–896.PubMedGoogle Scholar
  69. 69.
    Gustafson, B., Gogg, S., Hedjazifar, S., Jenndahl, L., Hammarstedt, A., and Smith, U. (2009) Inflammation and impaired adipogenesis in hypertrophic obesity in man, Am. J. Physiol. Endocrinol. Metab., 297, E999–E1003.PubMedGoogle Scholar
  70. 70.
    Charriere, G., Cousin, B., Arnaud, E., Andre, M., Bacou, F., Penicaud, L, and Casteilla, L. (2003) Preadipocyte conversion to macrophage, J. Biol. Chem., 278, 9850–9855.PubMedGoogle Scholar
  71. 71.
    Tontonoz, P., Nagy, L., Alvarez, J. G., Thomazy, V. A., and Evans, R. M. (1998) PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL, Cell, 93, 241–252.PubMedGoogle Scholar
  72. 72.
    Amri, E. Z., Ailhaud, G., and Grimaldi, P. A. (1994) Fatty acids as signal transducing molecules: involvement in the differentiation of preadipose to adipose cells, J. Lipid Res., 35, 930–937.PubMedGoogle Scholar
  73. 73.
    Shillabeer, G., and Lau, D. C. (1994) Regulation of new fat cell formation in rats: the role of dietary fats, J. Lipid Res., 35, 592–600.PubMedGoogle Scholar
  74. 74.
    De Heredia, F. P., Larque, E., Portillo, M. P., Canteras, M., Zamora, S., and Garaulet, M. (2008) Age-related changes in FA from different adipose depots in rat and their association with adiposity and insulin, Nutrition, 24, 1013–1022.PubMedGoogle Scholar
  75. 75.
    Tchkonia, T., Morbeck, D. E., von Zglinicki, T., van Deursen, J., Lustgarten, J., Scrable, H., Khosla, S., Jensen, M. D., and Kirkland, J. L. (2010) Fat tissue, aging, and cellular senescence, Cell, 9, 667–684.Google Scholar
  76. 76.
    Bosch, L., Tor, M., Reixach, J., and Estany, J. (2012) Age-related changes in intramuscular and subcutaneous fat content and fatty acid composition in growing pigs using longitudinal data, Meat Sci., 91, 358–363.PubMedGoogle Scholar
  77. 77.
    Tchkonia, T., Corkey, B. E., and Kirkland, J. L. (2006) Current views of the fat cell as an endocrine cell: lipotoxicity, Endocr. Updates, 26, 105–118.Google Scholar
  78. 78.
    Sun, K., Kusminski, C. M., and Scherer, Ph. E. (2011) Adipose tissue remodeling and obesity, J. Clin. Invest., 121, 2094–2101.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Hughes, V. A., Roubenoff, R., Wood, M., Frontera, W. R., Evans, W. J., and Fiatarone Singh, M. A. (2004) Anthropometric assessment of 10-y changes in body composition in the elderly, Am. J. Clin. Nutr., 80, 475–482.PubMedGoogle Scholar
  80. 80.
    Raguso, C. A., Kyle, U., Kossovsky, M. P., Roynette, C., Paoloni-Giacobino, A., Hans, D., Genton, L., and Pichard, C. (2006) A 3-year longitudinal study on body composition changes in the elderly: role of physical exercise, Clin. Nutr., 25, 573–580.PubMedGoogle Scholar
  81. 81.
    Jakus, P. B., Sandor, A., Janaky, T., and Farkas, V. (2008) Cooperation between BAT and WAT of rats in thermogenesis in response to cold, and the mechanism of glycogen accumulation in BAT during reacclimation, J. Lipid Res., 49, 332–339.PubMedGoogle Scholar
  82. 82.
    Elbelt, U., Hofmann, T., and Stengel, A. (2013) Irisin: what promise does it hold? Curr. Opin. Clin. Nutr. Metab. Care, 16, 541–547.PubMedGoogle Scholar
  83. 83.
    Giralt, M., and Villarroya, F. (2013) White, brown, beige/brite: different adipose cells for different functions? Endocrinology, 154, 2992–3000.PubMedGoogle Scholar
  84. 84.
    Rogers, N. H., Landa, A., Park, S., and Smith, R. G. (2012) Aging leads to a programmed loss of brown adipocytes in murine subcutaneous white adipose tissue, Aging Cell, 11, 1074–1083.PubMedGoogle Scholar
  85. 85.
    Ebbert, J. O., and Jensen, M. D. (2013) Fat depots, free FA, and dyslipidemia, Nutrients, 5, 498–508.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Qian, H., Azain, M. J., Hartzell, D. L., and Baile, C. A. (1998) Increased leptin resistance as rats grow to maturity, Proc. Soc. Exp. Biol. Med., 219, 160–165.PubMedGoogle Scholar
  87. 87.
    Wang, Z.-W., Pan, W.-T., Lee, Y., Kakuma, T., Zhou, Y.-T., and Unger, R. H. (2001) The role of leptin resistance in the lipid abnormalities of aging, FASEB J., 15, 108–114.PubMedGoogle Scholar
  88. 88.
    Poynter, M. E., and Daynes, R. A. (1998) Peroxisome proliferator-activated receptor α activation modulates cellular redox status, represses nuclear factor-κβ signaling, and reduces inflammatory cytokine production in aging, J. Biol. Chem., 273, 32833–32841.PubMedGoogle Scholar
  89. 89.
    Sohal, R. S., and Weindruch, R. (1996) Oxidative stress, caloric restriction and aging, Science, 273, 59–63.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Goodpaster, B. H., Krishnaswami, S., Resnick, H., Kelley, D. E., Haggerty, C., Harris, T. B., Schwartz, A. V., Kritchevsky, S., and Newman, A. B. (2003) Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women, Diabetes Care, 26, 372–379.PubMedGoogle Scholar
  91. 91.
    Guo, S. S., Zeller, C., Chumlea, W. C., and Siervogel, R. M. (1999) Aging, body composition, and lifestyle: the Fels longitudinal study, Am. J. Clin. Nutr., 70, 405–411.PubMedGoogle Scholar
  92. 92.
    Seidell, J. C., Oosterlee, A., Thijssen, M. A., Burema, J., Deurenberg, P., Hautvast, J. G., and Ruijs, J. H. (1987) Assessment of intra-abdominal and subcutaneous abdominal fat: relation between anthropometry and computed tomography 1–3, Am. J. Clin. Nutr., 45, 7–13.PubMedGoogle Scholar
  93. 93.
    DeNino, W. F., Tchernof, A., Dionne, I. J., Toth, M. J., Ades, P. A., Sites, C. K., and Poehlman, E. T. (2001) Contribution of abdominal adiposity to age-related differences in insulin sensitivity and plasma lipids in healthy non-obese women, Diabetes Care, 24, 925–932.PubMedGoogle Scholar
  94. 94.
    Van Harmelen, V., Skurk, T., Rohrig, K., Lee, Y. M., Halbleib, M., Aprath-Husmann, I., and Hauner, H. (2003) Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women, Int. J. Obes. Relat. Metab. Disord., 27, 889–895.PubMedGoogle Scholar
  95. 95.
    Ross, R., Hudson, R., Day, A. G., and Lam, M. (2013) Abdominal obesity, muscle composition, and insulin resistance in premenopausal women, Contemp. Clin. Trials, 34, 155–160.PubMedGoogle Scholar
  96. 96.
    Kim, J. Y., van de Wall, E., Laplante, M., Azzara, A., Trujillo, M. E., Hofmann, S. M., Schraw, T., Durand, J. L., Li, H., Li, G., Jelicks, L. A., Mehler, M. F., Hui, D. Y., Deshaies, Y., Shulman, G. I., Schwartz, G. J., and Scherer, P. E. (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue, J. Clin. Invest., 117, 2621–2637.PubMedCentralPubMedGoogle Scholar
  97. 97.
    Arner, P., Lithell, H., Wahrenberg, H., and Bronnergard, M. (1991) Expression of lipoprotein lipase in different human subcutaneous adipose tissue regions, J. Lipid Res., 32, 423–429; Scholar
  98. 98.
    Rosen, C., Rodriguez, J. P., and Pino, A. M. (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications, Crit. Rev. Eukaryot. Gene Expr., 19, 109–124.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Cnop, M., Hannaert, J.-C., Grupping, A. Y., and Pipeleers, D. G. (2002) Low density lipoprotein can cause death of islet beta-cells by its cellular uptake and oxidative modification, Endocrinology, 143, 3449–3453.PubMedGoogle Scholar
  100. 100.
    Chari, M., Lam, C. K. L., and Lam, T. K. T. (2010) Hypothalamic fatty acid sensing in the normal and disease state, Chap. 20, in Fat Detection: Taste, Texture, and Post Ingestive Effects, CRC Press, Boca Raton.Google Scholar
  101. 101.
    Lee, Y., Hirose, H., Zhou, Y.-T., Esser, V., McGarry, J. D., and Unger, R. H. (1997) Increased lipogenic capacity of the islets of obese rats. A role in the pathogenesis of NIDDM, Diabetes, 46, 408–413.PubMedGoogle Scholar
  102. 102.
    Perez-Campo, R., Lopez-Torres, M., Cadenas, S., Rojas, C., and Barja, G. (1998) The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach, J. Comp. Physiol., 168, 149–158.Google Scholar
  103. 103.
    Pineda Torra, I., Gervois, P., and Staels, B. (1999) Peroxisome proliferator-activated receptor α in metabolic disease, inflammation, atherosclerosis and aging, Curr. Opin. Lipidol., 10, 151–159.PubMedGoogle Scholar
  104. 104.
    Nakajima, T., Fujioka, S., and Tokunaga K. (1989) Correlation of intra-abdominal fat accumulation and left ventricular performance in obesity, Am. J. Cardiol., 64, 369–373.PubMedGoogle Scholar
  105. 105.
    Duflou, J., Virmani, R., Rabi, I., Burke, A., Farb, A., and Smialek, J. (1995) Sudden death as a result of heart disease in morbid obesity, Am. Heart J., 130, 306–313.PubMedGoogle Scholar
  106. 106.
    Anisimov, V. N., Piskunova, T. S., Popovich, I. G., Zabezhinski, M. A., Tyndyk, M. L., Egormin, P. A., Yurova, M. N., Rosenfeld, S. V., Semenchenko, A. V., Kovalenko, I. G., Poroshina, T. E., and Berstein, L. M. (2010) Gender differences in metformin effect on aging, life span and spontaneous tumorigenesis in 129/Sv mice, Aging (Albany NY), 2, 945–958.Google Scholar
  107. 107.
    Rzheshevsky, V. (2013) Fatal “triad”: lipotoxicity, oxidative stress, and phenoptosis, Biochemistry (Moscow), 78, 991–1000; Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.World Wide Medical AssistanceOberwill ZugSwitzerland
  2. 2.Pirogov Russian State Medical UniversityRussian Scientific and Clinical Center of GerontologyMoscowRussia

Personalised recommendations