Advertisement

Biochemistry (Moscow)

, Volume 79, Issue 6, pp 571–576 | Cite as

Induction of Ca2+-dependent cyclosporin a-insensitive nonspecific permeability of the inner membrane of liver mitochondria and cytochrome c release by α,ω-hexadecanedioic acid in media of varying ionic strength

  • M. V. Dubinin
  • A. A. Vedernikov
  • E. I. Khoroshavina
  • V. N. SamartsevEmail author
Article

Abstract

In liver mitochondria loaded with Ca2+ or Sr2+, α,ω-hexadecanedioic acid (HDA) can induce nonspecific permeability of the inner membrane (mitochondrial pore) by the mechanism insensitive to cyclosporin A (CsA). In this work we studied the effect of ionic strength of the incubation medium on the kinetics of the processes that accompany Ca2+-dependent induction of the mitochondrial pore by fatty acid: organelle swelling, Ca2+ release from the matrix, changes in transmembrane potential (Δψ) and rate of oxygen consumption, and the release of cytochrome c from the intermembrane space. Two basic incubation media were used: sucrose medium and isotonic ionic medium containing KCl without sucrose. We found that 200 μM Ca2+ and 20 μM HDA in the presence of CsA effectively induce high-amplitude swelling of mitochondria both in the case of sucrose and in the ionic incubation medium. In the presence of CsA, mitochondria can rapidly absorb Ca2+ and retain it in the matrix for a while without reducing Δψ. Upon incubation in the ionic medium, mitochondria retain most of the added Ca2+ in the matrix for a short time without reducing the Δψ. In both cases the addition of HDA to the mitochondria 2 min after the introduction of Ca2+ leads to the rapid release of these ions from the matrix and total drop in Δψ. The mitochondrial swelling induced by Ca2+ and HDA in non-ionic medium is accompanied by almost maximal stimulation of respiration. Under the same conditions, but during incubation of mitochondria in the ionic medium, it is necessary to add cytochrome c for significant stimulation of respiration. The mitochondrial swelling induced by Ca2+ and HDA leads to the release of cytochrome c in a larger amount in the case of ionic medium than for the sucrose medium. We conclude that high ionic strength of the incubation medium determines the massive release of cytochrome c from mitochondria and liberates it from the respiratory chain, which leads to blockade of electron transport along the respiratory chain and consequently to disruption of the energy functions of the organelles.

Key words

liver mitochondria α,ω-hexadecanedioic acid cyclosporin A-insensitive permeability Ca2+ cytochrome c 

Abbreviations

CsA

cyclosporin A

HDA

α,ω-hexadecanedioic acid

TPP+

tetraphenylphosphonium

Δψ

transmembrane electrical potential

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2010) Membrane Bioenergetics [in Russian], MSU, Moscow.Google Scholar
  2. 2.
    Malhi, H., Guicciardi, M. E., and Gores, G. J. (2010) Physiol. Rev., 90, 1165–1194.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Kroemer, G., Galluzzi, L., and Brenner, C. (2007) Physiol. Rev., 87, 99–163.PubMedCrossRefGoogle Scholar
  4. 4.
    Zorov, D. B., Plotnikov, E. Y., Jankauskas, S. S., Isaev, N. K., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Pulkova, N. V., Zorov, S. D., and Morosanova, M. A. (2012) Biochemistry (Moscow), 77, 742–753.CrossRefGoogle Scholar
  5. 5.
    Skulachev, V. P. (2012) Biochemistry (Moscow), 77, 689–706.CrossRefGoogle Scholar
  6. 6.
    Azzolin, L., von Stockum, S., Basso, E., Petronilli, V., Forte, M. A., and Bernardi, P. (2010) FEBS Lett., 584, 2504–2509.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Rasola, A., and Bernardi, P. (2011) Cell Calcium, 50, 222–233.PubMedCrossRefGoogle Scholar
  8. 8.
    Crouser, E. D., Gadd, M. E., Julian, M. W., Huff, J. E., Broekemeier, K. M., Robbins, K. A., and Pfeiffer, D. R. (2003) Anal. Biochem., 317, 67–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Gilkerson, R. W., Selker, J. M., and Capaldi, R. A. (2003) FEBS Lett., 546, 355–358.PubMedCrossRefGoogle Scholar
  10. 10.
    Petrosillo, G., Ruggiero, F. M., Pistolese, M., and Paradies, G. (2004) J. Biol. Chem., 279, 53103–53108.PubMedCrossRefGoogle Scholar
  11. 11.
    Ott, M., Robertson, J. D., Gogvadze, V., Zhivotovsky, B., and Orrenius, S. (2002) Proc. Natl. Acad. Sci. USA, 99, 1259–1263.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Gogvadze, V., Orrenius, S., and Zhivotovsky, B. (2006) Biochim. Biophys. Acta, 1757, 639–647.PubMedCrossRefGoogle Scholar
  13. 13.
    Krasnikov, B. F., Melik-Nubarov, N. S., Zorova, L. D., Kuzminova, A. E., Isaev, N. K., Cooper, A. J., and Zorov, D. B. (2011) Am. J. Physiol. Cell Physiol., 300, 1193–1203.CrossRefGoogle Scholar
  14. 14.
    Schonfeld, P., and Bohnensack, R. (1997) FEBS Lett., 420, 167–170.PubMedCrossRefGoogle Scholar
  15. 15.
    Bodrova, M. E., Dedukhova, V. I., Samartsev, V. N., and Mokhova, E. N. (2000) IUBMB Life, 50, 189–194.PubMedCrossRefGoogle Scholar
  16. 16.
    Sultan, A., and Sokolove, P. (2001) Arch. Biochem. Biophys., 386, 37–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Sultan, A., and Sokolove, P. (2001) Arch. Biochem. Biophys., 386, 52–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Mironova, G. D., Gritsenko, E., Gateau-Roesch, O., Levrat, C., Agafonov, A., Belosludtsev, K., Prigent, A., Muntean, D., Dubois, M., and Ovize, M. (2004) J. Bioenerg. Biomembr., 36, 171–178.PubMedCrossRefGoogle Scholar
  19. 19.
    Belosludtsev, K. N., Belosludtseva, N. V., and Mironova, G. D. (2005) Biochemistry (Moscow), 70, 815–821.CrossRefGoogle Scholar
  20. 20.
    Sanders, R. J., Ofman, R., Valianpou, F., Kemp, S., and Wanders, R. J. (2005) J. Lipid Res., 46, 1001–1008.PubMedCrossRefGoogle Scholar
  21. 21.
    Reddy, J. K., and Rao, M. S. (2006) Am. J. Physiol. Gastrointest. Liver Physiol., 290, G852–G858.PubMedCrossRefGoogle Scholar
  22. 22.
    Wanders, R. J., Komen, J., and Kemp, S. (2011) FEBS J., 278, 182–194.PubMedCrossRefGoogle Scholar
  23. 23.
    Tonsgard, J. H. (1986) J. Pediatr., 109, 440–445.PubMedCrossRefGoogle Scholar
  24. 24.
    Kundu, R. K., Tonsgard, J. H., and Getz, G. S. (1991) J. Clin. Invest., 88, 1865–1872.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Orellana, M., Rodrigo, R., and Valdes, E. (1998) Gen. Pharmacol., 31, 817–820.PubMedCrossRefGoogle Scholar
  26. 26.
    Dubinin, M. V., Adakeeva, S. I., and Samartsev, V. N. (2013) Biochemistry (Moscow), 78, 412–417.CrossRefGoogle Scholar
  27. 27.
    Samartsev, V. N., Smirnov, A. V., Zeldi, I. P., Markova, O. V., Mokhova, E. N., and Skulachev, V. P. (1997) Biochim. Biophys. Acta, 1339, 251–257.CrossRefGoogle Scholar
  28. 28.
    Kamo, N., Muratsugu, M., Hondoh, R., and Kobatake, Y. (1979) J. Membr. Biol., 49, 105–121.PubMedCrossRefGoogle Scholar
  29. 29.
    Appaix, F., Minatchy, M., Riva-Lavieille, C., Olivares, J., Antonsson, B., and Saks, V. A. (2000) Biochim. Biophys. Acta, 1457, 175–181.PubMedCrossRefGoogle Scholar
  30. 30.
    Wojtczak, L., and Schonfeld, P. (1993) Biochim. Biophys. Acta, 1183, 41–57.PubMedCrossRefGoogle Scholar
  31. 31.
    Ichas, F., and Mazat, J.-P. (1998) Biochim. Biophys. Acta, 1366, 33–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Rybakova, S. R., Dubinin, M. V., and Samartsev, V. N. (2013) Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol., 7, 58–66.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. V. Dubinin
    • 1
  • A. A. Vedernikov
    • 1
  • E. I. Khoroshavina
    • 1
  • V. N. Samartsev
    • 1
    Email author
  1. 1.Mari State UniversityYoshkar-OlaRussia

Personalised recommendations