Biochemistry (Moscow)

, Volume 79, Issue 6, pp 566–570 | Cite as

Multiplex PCR for joint amplification of carbapenemase genes of molecular classes A, B, and D

  • Yu. I. Pobolelova
  • M. M. Ulyashova
  • M. Yu. RubtsovaEmail author
  • A. M. Egorov


Here we present a method for joint amplification of genes of carbapenemases of molecular classes A, B, and D for hybridization analysis on DNA microarrays. Using new-generation DNA polymerase KAPA2G Fast (KAPA Biosystems, USA) together with optimization of the conditions for the multiplex PCR with 20 primer pairs allowed us to carry out joint amplification of full-length genes of seven different types of carbapenemases (KPC, VIM, IMP, SPM, SIM, GIM, and OXA) with simultaneous inclusion of biotin as a label. Yield of the labeled PCR product sufficient for further analysis by microarray hybridization was achieved 40 min after the start of the reaction. This reduced the total duration of DNA identification techniques, including sample preparation stage, to 4 h. The method for gene identification by DNA microarrays with the improved stage of amplification of specific carbapenemase genes was tested with clinical strains of gram-negative bacteria Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacteriaceae spp. with different sensitivity towards carbapenems according to phenotyping tests. All clinical strains of A. baumannii resistant to carbapenems were found to have genes of OXA-type carbapenemases (subtypes OXA-51, OXA-23, OXA-40, and OXA-58), and clinical strains of P. aeruginosa resistant to carbapenems were found to possess the gene of VIM-type metallo-beta-lactamase (subtype VIM-2). When testing clinical strains sensitive to carbapenems, carbapenemase genes were not detected. Thus, the method of identifying carbapenemase genes on DNA microarrays is characterized by high accuracy and can be used in clinical microbiology laboratories for express diagnostics of resistance to carbapenems.

Key words

multiplex PCR carbapenemases hybridization analysis DNA microarray 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Livermore, D. M. (2001) J. Antimicrob. Chemother., 47, 247–250.PubMedCrossRefGoogle Scholar
  2. 2.
    Ziha-Zarifi, I., Llanes, C., Kohler, T., Pechere, J. C., and Plesiat, P. (1999) Antimicrob. Agents Chemother., 43, 287–291.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Poole, K. (2004) Cell. Mol. Life Sci., 61, 2200–2223.PubMedCrossRefGoogle Scholar
  4. 4.
    Bush, K. (2013) Ann. N. Y. Acad. Sci., 1277, 84–90.PubMedCrossRefGoogle Scholar
  5. 5.
    Queenan, A. M., and Bush, K. (2007) Clin. Microbiol. Rev., 20, 440–458.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Miriagou, V., Cornaglia, G., Edelstein, M., Galani, I., Giske, C. G., Gniadkowski, M., Malamou-Lada, E., Martinez-Martinez, L., Navarro, F., Nordmann, P., Peixe, L., Pournaras, S., Rossolini, G. M., Tsakris, A., Vatopoulos, A., and Canton, R. (2010) Clin. Microbiol. Infect., 16, 112–122.PubMedCrossRefGoogle Scholar
  7. 7.
    Semina, N. A., Sidorenko, S. V., and Rezvan, S. P. (2004) Klin. Mikrobiol. Antimikrob. Khimioter., 4, 306–359.Google Scholar
  8. 8.
    Shevchenko, O. V., Edelstein, M. V., and Stepanova, M. N. (2007) Klin. Mikrobiol. Antimikrob. Khimioter., 3, 211–218.Google Scholar
  9. 9.
    Stuart, C. J., Dierikx, C., Al Naiemi, N., Karczmarek, A., Van Hoek, A. H. A. M., Vos, P., Fluit, A. C., Scharringa, J., Duim, B., Mevius, D., and Leverstein-Van Hall, M. A. (2010) J. Antimicrob. Chemother., 65, 1377–1381.CrossRefGoogle Scholar
  10. 10.
    Peter, H., Berggrav, K., Thomas, P., Pfeifer, Y., Witte, W., Templeton, K., and Bachmann, T. T. (2012) J. Clin. Microbiol., 50, 3990–3998.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Ulyashova, M. M., Pobolelova, Yu. I., Rubtsova, M. Yu., Pisarev, V. V., and Egorov, A. M. (2013) FEBS J., 280,Suppl. 1, SW04, S16–35, 284.Google Scholar
  12. 12.
    Ulyashova, M. M., Khalilova, Y. I., Rubtsova, M. Y., Edelstein, M. V., Alexandrova, I. A., and Egorov, A. M. (2010) Acta Naturae, 2, 101–109.PubMedGoogle Scholar
  13. 13.
    Tanzer, L. R., Hu, Y., Cripe, L., and Moore, R. E. (1999) Anal. Biochem., 273, 307–310.PubMedCrossRefGoogle Scholar
  14. 14.
    Dang, C., and Jayasena, S. D. (1996) J. Mol. Biol., 264, 268–278.PubMedCrossRefGoogle Scholar
  15. 15.
    Mizuguchi, H., Nakatsuji, M., Fujiwara, S., Takagi, M., and Imanaka, T. (1999) J. Biochem., 126, 762–768.PubMedCrossRefGoogle Scholar
  16. 16.
    Koukhareva, I., Haoqiang, H., Yee, J., Shum, J., Paul, N., Hogrefe, R. I., and Lebedev, A. V. (2008) Nucleic Acids Symp. Ser. (Oxf.), 259–260.Google Scholar
  17. 17.
    Lebedev, A. V., Paul, N., Yee, J., Timoshchuk, V. A., Shum, J., Miyagi, K., Kellum, J., Hogrefe, R. I., and Zon, G. (2008) Nucleic Acids Res., 36, e131.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ashrafi, E. H., and Paul, N. (2009) Curr. Protoc. Mol. Biol., Chap. 15, Unit 15.9.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Yu. I. Pobolelova
    • 1
  • M. M. Ulyashova
    • 1
  • M. Yu. Rubtsova
    • 1
    Email author
  • A. M. Egorov
    • 1
    • 2
  1. 1.Chemical FacultyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Russian Medical Academy of Postgraduate EducationMoscowRussia

Personalised recommendations