Advertisement

Biochemistry (Moscow)

, Volume 79, Issue 6, pp 555–565 | Cite as

Interaction of myelin basic protein and 2′,3′-cyclic nucleotide phosphodiesterase with mitochondria

  • Yu. L. BaburinaEmail author
  • A. E. Gordeeva
  • D. A. Moshkov
  • O. V. Krestinina
  • A. A. Azarashvili
  • I. V. Odinokova
  • T. S. AzarashviliEmail author
Article

Abstract

The content and distribution of myelin basic protein (MBP) isoforms (17 and 21.5 kDa) as well as 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) were determined in mitochondrial fractions (myelin fraction, synaptic and non-synaptic mitochondria) obtained after separation of brain mitochondria by Percoll density gradient. All the fractions could accumulate calcium, maintain membrane potential, and initiate the opening of the permeability transition pore (mPTP) in response to calcium overloading. Native mitochondria and structural contacts between membranes of myelin and mitochondria were found in the myelin fraction associated with brain mitochondria. Using Western blot, it was shown that addition of myelin fraction associated with brain mitochondria to the suspension of liver mitochondria can lead to binding of CNPase and MBP, present in the fraction with liver mitochondria under the conditions of both closed and opened mPTP. However, induction of mPTP opening in liver mitochondria was prevented in the presence of myelin fraction associated with brain mitochondria (Ca2+ release rate was decreased 1.5-fold, calcium retention time was doubled, and swelling amplitude was 2.8-fold reduced). These results indicate possible protective properties of MBP and CNPase.

Key words

mitochondria myelin permeability transition pore myelin basic protein CNPase 

Abbreviations

CNPase

2′,3′-cyclic nucleotide-3′-phosphodiesterase

MBP

myelin basic protein

MFAM

myelin fraction associated with mitochondria

mPTP

mitochondrial permeability transition pore

PLP

proteolipid protein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gorman, A. M. (2008) J. Cell Mol. Med., 12, 2263–2280.PubMedCrossRefGoogle Scholar
  2. 2.
    Calabrese, V., Scapagnini, G., Giuffrida Stella, A. M., Bates, T. E., and Clark, J. B. (2001) Neurochem. Res., 26, 739–764.PubMedCrossRefGoogle Scholar
  3. 3.
    Aliev, G., Palacios, H. H., Walrafen, B., Lipsitt, A. E., Obrenovich, M. E., and Morales, L. (2009) Int. J. Biochem. Cell Biol., 41, 1989–2004.PubMedCrossRefGoogle Scholar
  4. 4.
    Kolehmainen, E., Knip, M., and Leppaluoto, J. (1990) Acta Physiol. Scand., 139, 493–501.PubMedCrossRefGoogle Scholar
  5. 5.
    Kolehmainen, E. (1996) J. Neurol. Sci., 141, 19–26.PubMedCrossRefGoogle Scholar
  6. 6.
    Kolehmainen, E., and Sormunen, R. (1998) Pancreas, 16, 176–188.PubMedCrossRefGoogle Scholar
  7. 7.
    Baburina, Yu. L., Krestinina, O. V., and Azarashvili, T. S. (2013) Neurochem. J., 7, 1–15.CrossRefGoogle Scholar
  8. 8.
    Huttemann, M., Zhang, Z., Mullins, C., Bessert, D., Lee, I., Nave, K. A., Appikatla, S., and Skoff, R. P. (2009) Neuro, 1.Google Scholar
  9. 9.
    Azarashvili, T., Krestinina, O., Galvita, A., Grachev, D., Baburina, Y., Stricker, R., Evtodienko, Y., and Reiser, G. (2009) Am. J. Physiol. Cell Physiol., 296, 1428–1439.CrossRefGoogle Scholar
  10. 10.
    Ghandour, M. S., Feutz, A. C., Jalabi, W., Taleb, O., Bessert, D., Cypher, M., Carlock, L., and Skoff, R. P. (2002) Glia, 40, 300–311.PubMedCrossRefGoogle Scholar
  11. 11.
    Knapp, P. E. (1996) Dev. Neurosci., 18, 297–308.PubMedCrossRefGoogle Scholar
  12. 12.
    Laursen, R. A., Samiullah, M., and Lees, M. B. (1983) FEBS Lett., 161, 71–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Azarashvili, T. S., Tyynela, J., Odinokova, I. V., Grigorjev, P. A., Baumann, M., Evtodienko, Y. V., and Saris, N. E. (2002) J. Bioenerg. Biomembr., 34, 279–284.PubMedCrossRefGoogle Scholar
  14. 14.
    Azarashvily, T. S., Tyynela, J., Baumann, M., Evtodienko, Y. V., and Saris, N. E. (2000) Biochem. Biophys. Res. Commun., 270, 741–744.PubMedCrossRefGoogle Scholar
  15. 15.
    Krestinina, O. V., Grachev, D. E., Odinokova, I. V., Reiser, G., Evtodienko, Y. V., and Azarashvili, T. S. (2009) Biochemistry (Moscow), 74, 421–429.CrossRefGoogle Scholar
  16. 16.
    Azarashvili, T., Odinokova, I., Bakunts, A., Ternovsky, V., Krestinina, O., Tyynela, J., and Saris, N. E. (2014) Cell Calcium, 55, 69–77.PubMedCrossRefGoogle Scholar
  17. 17.
    Bonora, A., Bononi, M. E., De, C., Giorgi, M., Lebiedzinska, S., Marchi, S., Patergnani, A., Rimessi, J. M., Suski, A., Wojtala, M. R., Wieckowski, G., Kroemer, L., and Galluzzi, P. (2013) Cell Cycle, 12, 674–683.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Krestinina, O., Makarov, P., Baburina, Yu., Gordeeva, A., and Azarashvili, T. (2013) Neurochem. J., 7, 284–290.CrossRefGoogle Scholar
  19. 19.
    Sims, N. R. (1990) J. Neurochem., 55, 698–707.PubMedCrossRefGoogle Scholar
  20. 20.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  21. 21.
    Krestinina, O. V., Kruglov, A. G., Grachev, D. E., Baburina, Yu. L., Evtodienko, Yu. V., Moshkov, D. A., Santalova, I. M., and Azarashvili, T. S. (2010) Biochemistry (Moscow), Ser. A: Membrane and Cell Biology, 4, 180–186.CrossRefGoogle Scholar
  22. 22.
    Azarashvili, T., Baburina, Y., Grachev, D., Krestinina, O., Evtodienko, Y., Stricker, R., and Reiser, G. (2011) Am. J. Physiol. Cell Physiol., 300, 707–720.CrossRefGoogle Scholar
  23. 23.
    Kim, T., and Pfeiffer, S. E. (1999) J. Neurocytol., 28, 281–293.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee, J., O’Neill, R. C., Park, M. W., Gravel, M., and Braun, P. E. (2006) Mol. Cell Neurosci., 31, 446–462.PubMedCrossRefGoogle Scholar
  25. 25.
    Sprinkle, T. J. (1989) Crit. Rev. Neurobiol., 4, 235–301.PubMedGoogle Scholar
  26. 26.
    Agrawal, H. C., Sprinkle, T. J., and Agrawal, D. (1990) Biochem. Biophys. Res. Commun., 170, 817–823.PubMedCrossRefGoogle Scholar
  27. 27.
    Gravel, M., DeAngelis, D., and Braun, P. E. (1994) J. Neurosci. Res., 38, 243–247.PubMedCrossRefGoogle Scholar
  28. 28.
    Gravel, M., Robert, F., Kottis, V., Gallouzi, I. E., Pelletier, J., and Braun, P. E. (2009) J. Neurosci. Res., 87, 1069–1079.PubMedCrossRefGoogle Scholar
  29. 29.
    Panfoli, I., Ravera, S., Bruschi, M., Candiano, G., and Morelli, A. (2011) Expert. Rev. Proteom., 8, 231–239.CrossRefGoogle Scholar
  30. 30.
    Morelli, A., Ravera, S., and Panfoli, I. (2011) Cell Biochem. Biophys., 61, 179–187.PubMedCrossRefGoogle Scholar
  31. 31.
    Ravera, S., Panfoli, I., Calzia, D., Aluigi, M. G., Bianchini, P., Diaspro, A., Mancardi, G., and Morelli, A. (2009) J. Biochem. Cell Biol., 41, 1581–1591.CrossRefGoogle Scholar
  32. 32.
    Harris, J. J., and Attwell, D. (2013) J. Cereb. Blood Flow Metab., 33, 33–36.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Karthigasan, J., and Kirschner, D. A. (1988) J. Neurochem., 51, 228–236.PubMedCrossRefGoogle Scholar
  34. 34.
    Rand, R. P., Fuller, N. L., and Lis, L. J. (1979) Nature, 279, 258–260.PubMedCrossRefGoogle Scholar
  35. 35.
    Zambonin, J. L., Zhao, C., Ohno, N., Campbell, G. R., Engeham, S., Ziabreva, I., Schwarz, N., Lee, S. E., Frischer, J. M., Turnbull, D. M., Trapp, B. D., Lassmann, H., Franklin, R. J., and Mahad, D. J. (2011) Brain, 134, 1901–1913.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Beest, M., and Hoekstra, D. (1993) Eur. J. Biochem., 211, 689–696.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith, G. S., Seymour, L. V., Boggs, J. M., and Harauz, G. (2012) Biochem. Biophys. Res. Commun., 422, 670–675.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Yu. L. Baburina
    • 1
    Email author
  • A. E. Gordeeva
    • 1
  • D. A. Moshkov
    • 1
  • O. V. Krestinina
    • 1
  • A. A. Azarashvili
    • 1
  • I. V. Odinokova
    • 1
  • T. S. Azarashvili
    • 1
    Email author
  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations