Advertisement

Biochemistry (Moscow)

, Volume 79, Issue 5, pp 469–477 | Cite as

Effect of conserved intersubunit amino acid substitutions on Hfq protein structure and stability

  • V. N. MurinaEmail author
  • B. S. Melnik
  • V. V. Filimonov
  • M. Ühlein
  • M. S. Weiss
  • U. Müller
  • A. D. Nikulin
Article

Abstract

Hfq is a thermostable RNA-binding bacterial protein that forms a uniquely shaped homohexamer. Based on sequence and structural similarity, Hfq belongs to the like-Sm (LSm) protein family. In spite of a rather high degree of homology between archaeal and eukaryotic LSm proteins, their quaternary structure is different, usually consisting of five to eight monomers. In this work, the importance of conserved intersubunit hydrogen bonds for the Hfq spatial organization was tested. The structures and stabilities for the Gln8Ala, Asn28Ala, Asp40Ala, and Tyr55Ala Hfq mutants were determined. All these proteins have the same hexamer organization, but their stability is different. Elimination of a single intersubunit hydrogen bond due to Gln8Ala, Asp40Ala, and Tyr55Ala substitutions results in decreased stability of the Hfq hexamer. Tyr55Ala Hfq as well as the earlier studied His57Ala Hfq has reduced protein thermostability, which seems to correspond to an opening of the protein hydrophobic core.

Key words

Hfq crystal structure tertiary structure protein thermostability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wagner, E. G. H. (2013) RNA Biol., 10, 619–626.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Wilusz, C. J., and Wilusz, J. (2013) RNA Biol., 10, 592–601.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Regnier, P., and Hajnsdorf, E. (2013) RNA Biol., 10, 602–609.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Vogel, J., and Luisi, B. F. (2011) Nat. Rev. Microbiol., 9, 578–589.PubMedCrossRefGoogle Scholar
  5. 5.
    Wilusz, C. J., and Wilusz, J. (2005) Nat. Struct. Mol. Biol., 12, 1031–1036.PubMedCrossRefGoogle Scholar
  6. 6.
    Valentin-Hansen, P., and Eriksen, M. (2004) Mol. Microbiol., 51, 1525–1533.PubMedCrossRefGoogle Scholar
  7. 7.
    Sauter, C. (2003) Nucleic Acids Res., 31, 4091–4098.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kambach, C., Walke, S., Young, R., Avis, J. M., de la Fortelle, E., Raker, V., Luhrmann, R., Li, J., and Nagai, K. (1999) Cell, 96, 375–387.PubMedCrossRefGoogle Scholar
  9. 9.
    Nielsen, J. S., Boggild, A., Andersen, C. B. F., Nielsen, G., Boysen, A., Brodersen, D. E., and Valentin-Hansen, P. (2007) RNA, 13, 2213–2223.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Murina, V. N., and Nikulin, A. D. (2011) Biochemistry (Moscow), 76, 1434–1449.CrossRefGoogle Scholar
  11. 11.
    Kilic, T., Sanglier, S., Van Dorsselaer, A., and Suck, D. (2006) Protein Sci., 15, 2310–2317.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Brennan, R. G., and Link, T. M. (2007) Curr. Opin. Microbiol., 10, 125–133.PubMedCrossRefGoogle Scholar
  13. 13.
    Das, D., Kozbial, P., Axelrod, H. L., Miller, M. D., McMullan D., Krishna, S. S., Abdubek, P., Acosta, C., Astakhova, T., Burra, P., Carlton, D., Chen, C., Chiu, H.-J., Clayton, T., Deller, M. C., Duan, L., Elias, Y., Elsliger, M.-A. M., Ernst, D., Farr, C., Feuerhelm, J., Grzechnik, A., Grzechnik, S. K., Hale, J., Han, G. W., Jaroszewski, L., Jin, K. K., Johnson, H. A., Klock, H. E., Knuth, M. W., Kumar, A., Marciano, D., Morse, A. T., Murphy, K. D., Nigoghossian, E., Nopakun, A., Okach, L., Oommachen, S., Paulsen, J., Puckett, C., Reyes, R., Rife, C. L., Sefcovic, N., Sudek, S., Tien, H., Trame, C., Trout, C. V., van den Bedem, H., Weekes, D., White, A., Xu, Q., Hodgson, K. O., Wooley, J., Deacon, A. M., Godzik, A., Lesley, S. A., and Wilson, I. A. (2009) Proteins, 75, 296–307.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Naidoo, N., Harrop, S. J., Sobti, M., Haynes, P. A., Szymczyna, B. R., Williamson, J. R., Curmi, P. M. G., and Mabbutt, B. C. (2008) J. Mol. Biol., 377, 1357–1371.PubMedCrossRefGoogle Scholar
  15. 15.
    Nikulin, A., Stolboushkina, E., Perederina, A., Vassilieva, I., Blaesi, U., Moll, I., Kachalova, G., Yokoyama, S., Vassylyev, D., Garber, M., and Nikonov, S. (2005) Acta Crystallogr. D. Biol. Crystallogr., 61, 141–146.PubMedCrossRefGoogle Scholar
  16. 16.
    Moskaleva, O., Melnik, B., Gabdulkhakov, A., Garber, M., Nikonov, S., Stolboushkina, E., and Nikulin, A. (2010) Acta Crystallogr. F, 66, 760–764.CrossRefGoogle Scholar
  17. 17.
    Senin, A. A., Potekhin, S. A., Tiktopulo, E. I., and Filomonov, V. V. (2000) J. Therm. Anal. Calorim., 62, 153–160.CrossRefGoogle Scholar
  18. 18.
    Privalov, P. L., Plotnikov, V. V., and Filimonov, V. V. (1975) J. Chem. Thermodynam., 7, 41–47.CrossRefGoogle Scholar
  19. 19.
    Phillips, K., and de la Pena, A. H. (2011) Curr. Protoc. Mol. Biol., Chap. 10, Unit 10.28.Google Scholar
  20. 20.
    Reinhard, L., Mayerhofer, H., Geerlof, A., Mueller-Dieckmann, J., and Weiss, M. S. (2013) Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun., 69, 209–214.PubMedCrossRefGoogle Scholar
  21. 21.
    Mueller, U., Darowski, N., Fuchs, M. R., Forster, R., Hellmig, M., Paithankar, K. S., Puhringer, S., Steffien, M., Zocher, G., and Weiss, M. S. (2012) J. Synchrotron Radiat., 19, 442–449.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Panja, S., and Woodson, S. A. (2012) J. Mol. Biol., 417, 406–412.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Kabsch, W. (2010) Acta Crystallogr. D. Biol. Crystallogr., 66, 125–132.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A, Powell, H. R., Read, R. J., Vagin, A., and Wilson, K. S. (2011) Acta Crystallogr. D. Biol. Crystallogr., 67, 235–242.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) J. Appl. Crystallogr., 40, 658–674.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) Acta Crystallogr. D. Biol. Crystallogr., 66, 213–221.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Emsley, P., and Cowtan, K. (2004) Acta Crystallogr. D. Biol. Crystallogr., 60, 2126–2132.PubMedCrossRefGoogle Scholar
  28. 28.
    Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Acta Crystallogr. D. Biol. Crystallogr., 66, 486–501.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Mikulecky, P. J., Kaw, M. K., Brescia, C. C., Takach, J. C., Sledjeski, D. D., and Feig, A. L. (2004) Nat. Struct. Mol. Biol., 11, 1206–1214.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Boudker, O., Todd, M. J., and Freire, E. (1997) J. Mol. Biol., 272, 770–779.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. N. Murina
    • 1
    Email author
  • B. S. Melnik
    • 1
  • V. V. Filimonov
    • 1
  • M. Ühlein
    • 2
  • M. S. Weiss
    • 2
  • U. Müller
    • 2
  • A. D. Nikulin
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Institute for Soft Matter and Functional MaterialsHelmholtz-Zentrum Berlin für Materialien und Energie12489Germany

Personalised recommendations