Advertisement

Biochemistry (Moscow)

, Volume 79, Issue 5, pp 435–439 | Cite as

Arachidonic acid activates release of calcium ions from reticulum via ryanodine receptor channels in C2C12 skeletal myotubes

  • E. R. Muslikhov
  • I. F. Sukhanova
  • P. V. AvdoninEmail author
Article

Abstract

Arachidonic acid causes an increase in free cytoplasmic calcium concentration ([Ca2+]i) in differentiated skeletal multinucleated myotubes C2C12 and does not induce calcium response in C2C12 myoblasts. The same reaction of myotubes to arachidonic acid is observed in Ca2+-free medium. This indicates that arachidonic acid induces release of calcium ions from intracellular stores. The blocker of ryanodine receptor channels of sarcoplasmic reticulum dantrolene (20 μM) inhibits this effect by 68.7 ± 6.3% (p < 0.001). The inhibitor of two-pore calcium channels of endolysosomal vesicles trans-NED19 (10 μM) decreases the response to arachidonic acid by 35.8 ± 5.4% (p < 0.05). The phospholipase C inhibitor U73122 (10 μM) has no effect. These data indicate the involvement of ryanodine receptor calcium channels of sarcoplasmic reticulum in [Ca2+]i elevation in skeletal myotubes caused by arachidonic acid and possible participation of two-pore calcium channels from endolysosomal vesicles in this process.

Key words

calcium ions skeletal myotubes arachidonic acid ryanodine-sensitive channels 

Abbreviations

AA

arachidonic acid

ARC

arachidonate-regulated calcium channels

RyR1

ryanodine receptor type I channels

TPC

two-pore channels

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Case, R. M., Eisner, D., Gurney, A., Jones, O., Muallem, S., and Verkhratsky, A. (2007) Cell Calcium, 42, 345–350.PubMedCrossRefGoogle Scholar
  2. 2.
    Clapham, D. E. (2007) Cell, 131, 1047–1058.PubMedCrossRefGoogle Scholar
  3. 3.
    Rubtsov, A. M. (2005) Ros. Fiziol. Zh. im. I. M. Sechenova, 91, 141–151.Google Scholar
  4. 4.
    Churchill, G. C., Okada, Y., Thomas, J. M., Genazzani, A. A., Patel, S., and Galione, A. (2002) Cell, 111, 703–708.PubMedCrossRefGoogle Scholar
  5. 5.
    Brailoiu, E., Churamani, D., Cai, X., Schrlau, M. G., Brailoiu, G. C., Gao, X., Hooper, R., Boulware, M. J., Dun, N. J., Marchant, J. S., and Patel, S. (2009) J. Cell Biol., 186, 201–209.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Calcraft, P. J., Ruas, M., Pan, Z., Cheng, X., Arredouani, A., Hao, X., Tang, J., Rietdorf, K., Teboul, L., Chuang, K. T., Lin, P., Xiao, R., Wang, C., Zhu, Y., Lin, Y., Wyatt, C. N., Parrington, J., Ma, J., Evans, A. M., Galione, A., and Zhu, M. X. (2009) Nature, 459, 596–600.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Rubtsov, A. M., and Batrukova, M. A. (1997) Biochemistry (Moscow), 62, 933–945.Google Scholar
  8. 8.
    Muslikhov, E. R., Surkov, K. V., Sukhanova, I. F., and Avdonin, P. V. (2010) Biol. Membr. (Moscow), 27, 505–511.Google Scholar
  9. 9.
    Henning, R. H., Duin, M., van Popta, J. P., Nelemans, A., and den Hertog, A. (1996) Br. J. Pharmacol., 117, 1785–1791.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Gutierrez-Martin, Y., Martin-Romero, F. J., and Henao, F. (2005) Biochim. Biophys. Acta, 1711, 33–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Kurebayashi, N., and Ogawa, Y. (2001) J. Physiol., 533, 185–199.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Avdonin, P. V., Surkov, K. V., Sukhanova, I. F., and Ruegg, U. T. (2008) Biol. Membr. (Moscow), 25, 348–354.Google Scholar
  13. 13.
    Lyfenko, A. D., and Dirksen, R. T. (2008) J. Physiol., 586, 4815–4824.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Gailly, P. (2012) Curr. Opin. Pharmacol., 12, 326–334.PubMedCrossRefGoogle Scholar
  15. 15.
    Clapham, D. E. (2003) Nature, 426, 517–524.PubMedCrossRefGoogle Scholar
  16. 16.
    Pedersen, S. F., Owsianik, G., and Nilius, B. (2005) Cell Calcium, 38, 233–252.PubMedCrossRefGoogle Scholar
  17. 17.
    Kiviluoto, S., Decuypere, J. P., De Smedt, H., Missiaen, L., Parys, J. B., and Bultynck, G. (2011) Skeletal Muscle, 1, 16.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Shuttleworth, T. J. (2009) Cell Calcium, 45, 602–610.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Singaravelu, K., Lohr, C., and Deitmer, J. W. (2008) Cerebellum, 7, 467–481.PubMedCrossRefGoogle Scholar
  20. 20.
    Van der Zee, L., Nelemans, A., and den Hertog, A. (1995) Biochem. J., 305(Pt. 3), 859–864.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Boittin, F. X., Petermann, O., Hirn, C., Mittaud, P., Dorchies, O. M., Roulet, E., and Ruegg, U. T. (2006) J. Cell Sci., 119, 3733–3742.PubMedCrossRefGoogle Scholar
  22. 22.
    Boittin, F. X., Shapovalov, G., Hirn, C., and Ruegg, U. T. (2010) Biochem. Biophys. Res. Commun., 391, 401–406.PubMedCrossRefGoogle Scholar
  23. 23.
    Meves, H. (2008) Br. J. Pharmacol., 155, 4–16.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Woolcott, O. O., Gustafsson, A. J., Dzabic, M., Pierro, C., Tedeschi, P., Sandgren, J., Bari, M. R., Nguyen, K. H., Bianchi, M., Rakonjac, M., Radmark, O., Ostenson, C. G., and Islam, M. S. (2006) Cell Calcium, 39, 529–537.PubMedCrossRefGoogle Scholar
  25. 25.
    Fleischer, S., and Inui, M. (1989) Annu. Rev. Biophys. Biophys. Chem., 18, 333–364.PubMedCrossRefGoogle Scholar
  26. 26.
    Rios, E., and Pizarro, G. (1991) Physiol. Rev., 71, 849–908.PubMedGoogle Scholar
  27. 27.
    Bleasdale, J. E., Thakur, N. R., Gremban, R. S., Bundy, G. L., Fitzpatrick, F. A., Smith, R. J., and Bunting, S. (1990) J. Pharmacol. Exp. Ther., 255, 756–768.PubMedGoogle Scholar
  28. 28.
    Muto, Y., Nagao, T., and Urushidani, T. (1997) J. Pharmacol. Exp. Ther., 282, 1379–1388.PubMedGoogle Scholar
  29. 29.
    Krause, T., Gerbershagen, M. U., Fiege, M., Weisshorn, R., and Wappler, F. (2004) Anaesthesia, 59, 364–373.PubMedCrossRefGoogle Scholar
  30. 30.
    Naylor, E., Arredouani, A., Vasudevan, S. R., Lewis, A. M., Parkesh, R., Mizote, A., Rosen, D., Thomas, J. M., Izumi, M., Ganesan, A., Galione, A., and Churchill, G. C. (2009) Nat. Chem. Biol., 5, 220–226.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Luo, D., Sun, H., Lan, X., Xiao, R., and Han, Q. (2005) Prostaglandins Other Lipid Mediat., 75, 141–151.PubMedCrossRefGoogle Scholar
  32. 32.
    Basset, O., Boittin, F. X., Dorchies, O. M., Chatton, J. Y., van Breemen, C., and Ruegg, U. T. (2004) J. Biol. Chem., 279, 47092–47100.PubMedCrossRefGoogle Scholar
  33. 33.
    Sauvadet, A., Rohn, T., Pecker, F., and Pavoine, C. (1997) J. Biol. Chem., 272, 12437–12445.PubMedCrossRefGoogle Scholar
  34. 34.
    Magne, S., Couchie, D., Pecker, F., and Pavoine, C. (2001) J. Biol. Chem., 276, 39539–39548.PubMedCrossRefGoogle Scholar
  35. 35.
    Amadou, A., Nawrocki, A., Best-Belpomme, M., Pavoine, C., and Pecker, F. (2002) Am. J. Physiol. Cell Physiol., 282, 1339–1347.CrossRefGoogle Scholar
  36. 36.
    Yen-Yam-Wah, V., Lee, A. K., and Tse, A. (2012) Cell Calcium, 51, 140–148.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. R. Muslikhov
    • 1
  • I. F. Sukhanova
    • 1
  • P. V. Avdonin
    • 1
    Email author
  1. 1.Koltsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations