Biochemistry (Moscow)

, Volume 79, Issue 5, pp 425–434 | Cite as

Mechanisms of generation of local ΔpH in mitochondria and bacteria

  • E. S. MedvedevEmail author
  • A. A. Stuchebrukhov


The concepts of global and local coupling between proton generators, the enzymes of the respiratory chain, and the consumer, the ATP synthase, coexist in the theory of oxidative phosphorylation. Global coupling is trivial proton transport via the aqueous medium, whereas local coupling implies that the protons pumped are consumed before they escape to the bulk phase. In this work, the conditions for the occurrence of local coupling are explored. It is supposed that the membrane retains protons near its surface and that the proton current generated by the proton pumps rapidly decreases with increasing proton motive force (pmf). It is shown that the competition between the processes of proton translocation across the membrane and their dissipation from the surface to the bulk can result in transient generation of a local ΔpH in reply to a sharp change in pmf; the appearance of local ΔpH, in turn, leads to rapid recovery of the pmf, and hence, it provides for stabilization of the potential at the membrane. Two mechanisms of such kind are discussed: 1) pH changes in the surface area due to proton pumping develop faster than those due to proton escape to the bulk; 2) the former does not take place, but the protons leaving the surface do not equilibrate with the bulk immediately; rather, they give rise to a non-equilibrium concentration near the surface and, as a result, to a back proton flow to the surface. The first mechanism is more efficient, but it does not occur in mitochondria and neutrophilic bacteria, whereas the second can produce ΔpH on the order of unity. In the absence of proton retardation at the surface, local ΔpH does not arise, whereas the formation of global ΔpH is possible only at buffer concentration of less than 10 mM. The role of the mechanisms proposed in transitions between States 3 and 4 of the respiratory chain is discussed. The main conclusion is that surface protons, under conditions where they play a role, support stabilization of the membrane pmf and rapid communication between proton generators and consumers, while their contribution to the energetics is not significant.

Key words

ATP synthesis proton motive force proton pump local coupling global coupling 



bacterial membrane


chemical potential gradient at the membrane


electric potential gradient at the membrane


mitochondrial membrane


proton motive force


local pH change with respect to the equilibrium value at a given side of the membrane (see Eq. (19))


local transmembrane pH gradient (see Eq. (20))


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Soga, N., Kinoshita, K., Jr., Yoshida, M., and Suzuki, T. (2012) J. Biol. Chem., 287, 9633–9639.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Nicholls, D. G. (2005) Biochim. Biophys. Acta, 1710, 63–65.PubMedCrossRefGoogle Scholar
  3. 3.
    Zharova, T. V., and Vinogradov, A. D. (2012) Biochemistry (Moscow), 77, 1000–1007.CrossRefGoogle Scholar
  4. 4.
    Williams, R. J. P. (1978) FEBS Lett., 85, 9–19.PubMedCrossRefGoogle Scholar
  5. 5.
    Williams, R. J. P. (1982) FEBS Lett., 150, 1–3.CrossRefGoogle Scholar
  6. 6.
    Williams, R. J. P. (1993) Biosci. Rep., 13, 191–212.PubMedCrossRefGoogle Scholar
  7. 7.
    Williams, R. J. P. (2001) ChemBioChem, 2, 637–641.PubMedCrossRefGoogle Scholar
  8. 8.
    Kell, D. B. (1979) Biochim. Biophys. Acta, 549, 55–99.PubMedCrossRefGoogle Scholar
  9. 9.
    Mitchell, P. (1968) Chemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin, Cornwall.Google Scholar
  10. 10.
    Eroshenko, L. V., Marakhovskaya, A. S., Vangeli, I. M., Semenyuk, P. I., Orlov, V. N., and Yaguzhinsky, L. S. (2012) Doklady Biochem. Biophys., 444, 158–161.CrossRefGoogle Scholar
  11. 11.
    Yaguzhinsky, L. S., Motovilov, K. A., Lobysheva, N. V., Marakhovskaya, A. S., and Moiseeva, V. S. (2011) FEBS J., 278, 378–378.Google Scholar
  12. 12.
    Antonenko, Y. N., Kovbasnyuk, O. N., and Yaguzhinsky, L. S. (1993) Biochemistry (Moscow), 58, 684–691.Google Scholar
  13. 13.
    Antonenko, Y. N., Kovbasnjuk, O. N., and Yaguzhinsky, L. S. (1993) Biochim. Biophys. Acta, 1150, 45–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Moiseeva, V. S., Motovilov, K. A., Lobysheva, N. V., Orlov, V. N., and Yaguzhinsky, L. S. (2011) Doklady Biochem. Biophys., 438, 127–130.CrossRefGoogle Scholar
  15. 15.
    Pastore, D., Soccio, M., Laus, M. N., and Trono, D. (2013) BMB Rep., 46, 391–397.PubMedCrossRefGoogle Scholar
  16. 16.
    Cherepanov, D. A., Feniouk, B. A., Junge, W., and Mulkidjanian, A. Y. (2003) Biophys. J., 85, 1307–1316.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Medvedev, E. S., and Stuchebrukhov, A. A. (2011) J. Phys. Condens. Matt., 23, 234103.CrossRefGoogle Scholar
  18. 18.
    Medvedev, E. S., and Stuchebrukhov, A. A. (2013) FEBS Lett., 587, 345–349.PubMedCrossRefGoogle Scholar
  19. 19.
    Drachev, A. L., Markin, V. S., and Skulachev, V. P. (1984) Biol. Membr. (Moscow), 1, 453–477.Google Scholar
  20. 20.
    Drachev, A. L., Markin, V. S., and Skulachev, V. P. (1985) Biochim. Biophys. Acta, 811, 197–215.PubMedCrossRefGoogle Scholar
  21. 21.
    Widengren, J. (2013) in Fluorescence Fluctuation Spectroscopy (Tetin, S. Y., ed.) pp. 231–252.Google Scholar
  22. 22.
    Skulachev, V. P. (1989) Energetics of Biological Membranes [in Russian], Nauka, Moscow.Google Scholar
  23. 23.
    Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2012) Membrane Bioenergetics [in Russian], Lomonosov Moscow State University Publishers, Moscow.Google Scholar
  24. 24.
    Beard, D. A. (2005) PLoS Comput. Biol., 1, 252–264.CrossRefGoogle Scholar
  25. 25.
    Schaffhauser, D. F., Patti, M., Goda, T., Miyahara, Y., Forster, I. C., and Dittrich, P. S. (2012) PLoS ONE, 7, e39238.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2013) Principles of Bioenergetics, Springer, Berlin.CrossRefGoogle Scholar
  27. 27.
    Yurkov, V. I., Fadeeva, M. S., and Yaguzhinsky, L. S. (2005) Biochemistry (Moscow), 70, 195–199.CrossRefGoogle Scholar
  28. 28.
    Georgievskii, Y., Medvedev, E. S., and Stuchebrukhov, A. A. (2002) Biophys. J., 82, 2833–2846.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Georgievskii, Y., Medvedev, E. S., and Stuchebrukhov, A. A. (2002) J. Chem. Phys., 116, 1692–1699.CrossRefGoogle Scholar
  30. 30.
    Medvedev, E. S., and Stuchebrukhov, A. A. (2006) J. Math. Biol., 52, 209–234.PubMedCrossRefGoogle Scholar
  31. 31.
    Garlid, K. D., and Paucek, P. (2003) Biochim. Biophys. Acta, 1606, 23–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Wu, F., Zhang, J., and Beard, D. A. (2009) Proc. Natl. Acad. Sci. USA, 106, 7143–7148.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Babakov, A. V., Ermishkin, L. N., and Liberman, E. A. (1966) Nature, 210, 953–955.PubMedCrossRefGoogle Scholar
  34. 34.
    Skulachev, V. P. (1988) Membrane Bioenergetics, Springer, Berlin.CrossRefGoogle Scholar
  35. 35.
    Rubin, A. B. (2000) Biophysics [in Russian], Vol. 2, Knizhnyi Dom Universitet, Moscow.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussia
  2. 2.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations