Biochemistry (Moscow)

, Volume 79, Issue 5, pp 417–424 | Cite as

Calix[4]arene C-90 selectively inhibits Ca2+,Mg2+-ATPase of myometrium cell plasma membrane

  • T. A. VeklichEmail author
  • A. A. Shkrabak
  • N. N. Slinchenko
  • I. I. Mazur
  • R. V. Rodik
  • V. I. Boyko
  • V. I. Kalchenko
  • S. A. Kosterin


The supramolecular compound calix[4]arene C-90 (5,11,17,23-tetra(trifluoro)methyl(phenylsulfonylimino)-methylamino-25,26,27,28-tetrapropoxycalix[4]arene) is shown to efficiently inhibit the ATP hydrolase activity of Ca2+,Mg2+-ATPase in the myometrium cell plasma membrane fraction and also in a preparation of the purified enzyme solubilized from this subcellular fraction. The inhibition coefficient I 0.5 values were 20.2 ± 0.5 and 58.5 ± 6.4 μM for the membrane fraction and the solubilized enzyme, respectively. The inhibitory effect of calix[4]arene C-90 was selective comparatively to other ATPases localized in the plasma membrane: calix[4]arene C-90 did not influence the activities of Na+,K+-ATPase and “basal” Mg2+-ATPase. The inhibitory effect of calix[4]arene C-90 on the Ca2+,Mg2+-ATPase activity was associated with the cooperative action of four trifluoromethylphenyl sulfonylimine (sulfonylamidine) groups oriented similarly on the upper rim of the calix[4]arene macrocycle (the calix[4]arene “bowl”). The experimental findings seem to be of importance for studies, using calix[4]arene C-90, of membrane mechanisms of regulation of calcium homeostasis in smooth muscle cells and also for investigation of the participation of the plasma membrane Ca2+-pump in control of electro- and pharmacomechanical coupling in myocytes.

Key words

Ca2+,Mg2+-ATPase plasma membrane calcium pump smooth muscle cells myometrium calix[4]arenes sulfonylamidines 



plasma membrane


smooth muscular cells


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koide, M., Nystoriak, M. A., Brayden, J. E., and Wellman, G. C. (2011) Acta Neurochir. Suppl., 110, Pt. 1, 145–150.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Kosterin, S. A. (1990) Calcium Transport in Smooth Muscles [in Russian], Naukova Dumka, Kiev.Google Scholar
  3. 3.
    Veklich, T. (2002) Annales Universitatis Mariae Curie-Sclodowska, XV, No. 39, 427–431.Google Scholar
  4. 4.
    Gonzales, A. L., Amberg, G. C., and Earley, S. (2010) Am. J. Cell Physiol., 299, 279–288.CrossRefGoogle Scholar
  5. 5.
    Carafoli, E., and Brini, M. (2000) Curr. Opin. Chem. Biol., 4, 152–156.PubMedCrossRefGoogle Scholar
  6. 6.
    Kosterin, S. O. (2003) Neurophysiology, 35, 215–228.CrossRefGoogle Scholar
  7. 7.
    Cartwright, E. J., Oceandy, D., Austin, C., and Neyses, L. (2011) Sci. China Life Sci., 54, 691–698.PubMedCrossRefGoogle Scholar
  8. 8.
    Kosterin, S. A., Bratkova, N. F., Babich, L. G., Shinlova, O. P., Slinchenko, N. N., Shlykov, S. G., Zimina, V. P., Rovents, N. A., and Veklich, T. A. (1996) Ukr. Biokhim. Zh., 68, 50–61.PubMedGoogle Scholar
  9. 9.
    Szewczyk, M. M., Pande, J., and Grover, A. K. (2008) Pflugers Arch. Eur. J. Physiol., 456, 255–266.CrossRefGoogle Scholar
  10. 10.
    Rodik, R. V., Boyko, V. I., Danylyuk, O. B., Suwinska, K., Tsymbal, I. F., Slinchenko, N. V., Babich, L. G., Shlykov, S. O., Kosterin, S. O., Lipkowski, J., and Kalchenko, V. I. (2005) Tetrahedron Lett., 46, 7459–7462.CrossRefGoogle Scholar
  11. 11.
    Veklich, T. A., and Kosterin, S. A. (2005) Ukr. Biokhim. Zh., 77, 66–75.PubMedGoogle Scholar
  12. 12.
    Kondratyuk, T. P., Bychenyuk, S. F., Pishchepa, A. A., Babich, L. G., Kursky, M. D., and Osipenko, A. A. (1986) Ukr. Biokhim. Zh., 58, 50–56.Google Scholar
  13. 13.
    Bradford, M. M. (1976) Anal. Biochem., 72, 248–282.PubMedCrossRefGoogle Scholar
  14. 14.
    Flynn, E. R. M., Bradley, K. N., Muir, T. C., and McCarron, J. G. (2001) J. Biol. Chem., 276, 36411–36418.PubMedCrossRefGoogle Scholar
  15. 15.
    Robinson, J. D. (1983) Biochim. Biophys. Acta, 727, 63–69.PubMedCrossRefGoogle Scholar
  16. 16.
    Veklich, T. A., Kosterin, S. A., and Shinlova, O. P. (2002) Ukr. Biokhim. Zh., 74, 42–48.PubMedGoogle Scholar
  17. 17.
    Slinchenko, N. N., Lyubakovskaya, L. A., Kursky, M. D., and Sopel, L. V. (1990) Ukr. Biokhim. Zh., 62, 60–65.PubMedGoogle Scholar
  18. 18.
    Rathbun, W. B., and Betlach, M. V. (1969) Anal. Biochem., 28, 436–445.PubMedCrossRefGoogle Scholar
  19. 19.
    Carafoli, E. (2011) Sci China Life Sci., 54, 686–690.PubMedCrossRefGoogle Scholar
  20. 20.
    Kosterin, S. A., and Burdyga, F. V. (1991) Usp. Sovr. Biol., 113, 485–506.Google Scholar
  21. 21.
    Veklich, T. O., Shkrabak, O. A., Mazur, Y. Y., Rodik, R. V., Boiko, V. I., Kalchenko, V. I., and Kosterin, S. O. (2013) Ukr. Biokhim. Zh., 85, 20–29.PubMedGoogle Scholar
  22. 22.
    Rodik, R. V. (2012) Ukr. Biokhim. Zh., 84, 5–15.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • T. A. Veklich
    • 1
    Email author
  • A. A. Shkrabak
    • 1
  • N. N. Slinchenko
    • 1
  • I. I. Mazur
    • 1
  • R. V. Rodik
    • 2
  • V. I. Boyko
    • 2
  • V. I. Kalchenko
    • 2
  • S. A. Kosterin
    • 1
  1. 1.Palladin Institute of BiochemistryNational Academy of Sciences of UkraineKievUkraine
  2. 2.Institute of Organic ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations