Advertisement

Biochemistry (Moscow)

, Volume 79, Issue 4, pp 349–361 | Cite as

Spectral and kinetic parameters of phosphorescence of triplet chlorophyll a in the photosynthetic apparatus of plants

  • A. A. KrasnovskyJr.
  • Yu. V. Kovalev
Review

Abstract

Spectral and kinetic parameters and quantum yield of IR phosphorescence accompanying radiative deactivation of the chlorophyll a (Chl a) triplet state were compared in pigment solutions, greening and mature plant leaves, isolated chloroplasts, and thalluses of macrophytic marine algae. On the early stages of greening just after the Shibata shift, phosphorescence is determined by the bulk Chl a molecules. According to phosphorescence measurement, the quantum yield of triplet state formation is not less than 25%. Further greening leads to a strong decrease in the phosphorescence yield. In mature leaves developing under normal irradiation conditions, the phosphorescence yield declined 1000-fold. This parameter is stable in leaves of different plant species. Three spectral forms of phosphorescence-emitting chlorophyll were revealed in the mature photosynthetic apparatus with the main emission maxima at 955, 975, and 995 nm and lifetimes ∼1.9, ∼1.5, and 1.1–1.3 ms. In the excitation spectra of chlorophyll phosphorescence measured in thalluses of macrophytic green and red algae, the absorption bands of Chl a and accessory pigments — carotenoids, Chl b, and phycobilins — were observed. These data suggest that phosphorescence is emitted by triplet chlorophyll molecules that are not quenched by carotenoids and correspond to short wavelength forms of Chl a coupled to the normal light harvesting pigment complex. The concentration of the phosphorescence-emitting chlorophyll molecules in chloroplasts and the contribution of these molecules to chlorophyll fluorescence were estimated. Spectral and kinetic parameters of the phosphorescence corresponding to the long wavelength fluorescence band at 737 nm were evaluated. The data indicate that phosphorescence provides unique information on the photophysics of pigment molecules, molecular organization of the photosynthetic apparatus, and mechanisms and efficiency of photodynamic stress in plants.

Key words

chlorophyll triplet state phosphorescence photodymanic stress photosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Terenin, A. N. (1943) Acta Phisicochim. (USSR), 18, 210–241.Google Scholar
  2. 2.
    Lewis, G. N., and Kasha, M. (1944) J. Amer. Chem. Soc., 66, 2100–2116.CrossRefGoogle Scholar
  3. 3.
    Kasha, M. (2005) Spectrum, 18, 5–11.Google Scholar
  4. 4.
    Jablonski, A. (1935) Z. Physik, 94, 38–46.CrossRefGoogle Scholar
  5. 5.
    Terenin, A. N. (1947) Bull. USSR Acad. Sci. Ser. Biol., 3, 369–376.Google Scholar
  6. 6.
    Krasnovsky, A. A. (1947) Bull. USSR Acad. Sci. Ser. Biol., 3, 377–396.Google Scholar
  7. 7.
    Calvin, M., and Dorough, G. D. (1947) Science, 105, 433–434.PubMedCrossRefGoogle Scholar
  8. 8.
    Calvin, M., and Dorough, G. D. (1948) J. Am. Chem. Soc., 70, 699–706.PubMedCrossRefGoogle Scholar
  9. 9.
    Livingston, R. (1949) in Photosynthesis in Plants (Frank, J., and Loomis, W. E., eds.) The Iova State College Press, pp. 179–196.Google Scholar
  10. 10.
    Livingston, R. (1960) Quart. Rev., 14, 174–199.CrossRefGoogle Scholar
  11. 11.
    Becker, R. S., and Kasha, M. (1955) J. Am. Chem. Soc., 77, 3669–3670.CrossRefGoogle Scholar
  12. 12.
    Fernandez, J., and Becker, R. S. (1959) J. Chem. Phys., 31, 467–471.CrossRefGoogle Scholar
  13. 13.
    Terenin, A. N. (1959) in Problems of Photosynthesis (Kursanov, A. L., et al., eds.) Publishing House of the USSR Academy of Sciences, Moscow, pp. 10–21.Google Scholar
  14. 14.
    Singh, J. S., and Becker, R. S. (1960) J. Amer. Chem. Soc., 82, 2083–2084.CrossRefGoogle Scholar
  15. 15.
    Amster, R. L. (1969) Photochem. Photobiol., 9, 331–338.PubMedCrossRefGoogle Scholar
  16. 16.
    Krasnovsky, A. A., Jr., Shuvalov, V. A., Litvin, F. F., and Krasnovsky, A. A. (1971) Dokl. AN SSSR, 199, 1181–1184.Google Scholar
  17. 17.
    Krasnovsky, A. A., Jr., Romaniuk, V. A., and Litvin, F. F. (1973) Dokl. AN SSSR, 209, 965–968.Google Scholar
  18. 18.
    Krasnovsky, A. A, Jr., Lebedev, N. N., and Litvin, F. F. (1974) Dokl. AN SSSR, 216, 1406–1409.Google Scholar
  19. 19.
    Krasnovsky, A. A., Jr., and Litvin, F. F. (1975) Bull. USSR Acad. Sci. Ser. Phys., 39, 1968–1971.Google Scholar
  20. 20.
    Krasnovsky, A. A., Jr., Lebedev, N. N., and Litvin, F. F. (1975) Dokl. AN SSSR, 225, 207–210.Google Scholar
  21. 21.
    Krasnovsky, A. A., Jr. (1979) Photochem. Photobiol., 29, 29–36.CrossRefGoogle Scholar
  22. 22.
    Krasnovsky, A. A., Jr. (1983) Singlet Oxygen in Biological Processes: Doctor-of-Science Thesis [in Russian], Lomonosov Moscow State University, Moscow.Google Scholar
  23. 23.
    Krasnovsky, A. A., Jr. (1993) SPIE Proc., 1887, 177–186.CrossRefGoogle Scholar
  24. 24.
    Krasnovsky, A. A., Jr. (2004) Biofizika, 49, 289–306.Google Scholar
  25. 25.
    Krasnovsky, A. A., Jr. (2007) in Photodynamic Therapy at the Cellular Level (Uzdensky, A. B., ed.) Research Signpost, Trivandrum-695 023, Kerala, India, pp. 17–62.Google Scholar
  26. 26.
    Krasnovsky, A. A., Jr. (2008) J. Photochem. Photobiol. A, 196, 210–218.CrossRefGoogle Scholar
  27. 27.
    Krasnovsky, A. A., Jr. (2014) in Handbook of Porphyrin Science (Kadish, K., et al., eds.) Vol. 33, World Scientific Publishing, pp. 77–166.Google Scholar
  28. 28.
    Mau, A. W. H., and Puza, M. (1977) Photochem. Photobiol., 25, 601–603.CrossRefGoogle Scholar
  29. 29.
    Dvornikov, S. S., Knyukshto, B. N., Sevchenko, A. N., Solovyov, K. N., and Tsvirko, M. P. (1978) Dokl. AN SSSR, 240, 1457–1460.Google Scholar
  30. 30.
    Dvornikov, S. S., Knyukshto, B. N., Sevchenko, A. N., Solovyov, K. N., and Tsvirko, M. P. (1979) Opt. Spektr., 46, 689–695.Google Scholar
  31. 31.
    Dvornikov, S. S., Knyukshto, B. N., Solovyov, K. N., and Tsvirko, M. P. (1979) J. Luminescence, 18/19, 491–494.CrossRefGoogle Scholar
  32. 32.
    Kleibeuker, J. F., Platenkamp, R. J., and Schaafsma, T. J. (1978) Chem. Phys., 27, 51–64.CrossRefGoogle Scholar
  33. 33.
    Krasnovsky, A. A., Jr., Lebedev, N. N., and Litvin, F. F. (1977) Stud. Biophys., 65, 81–89.Google Scholar
  34. 34.
    Krasnovsky, A. A., Jr. (1977) Acta Phys. Chem. (Szeged University, Hungary), 23, 147–154.Google Scholar
  35. 35.
    Krasnovsky, A. A., Jr., Lebedev, N. N., and Litvin, F. F. (1978) in Proc. 3rd Int. Seminar on Energy Transfer in Condensed Matter (Fiala, J., ed.) Universita Karlova, Prague, pp. 111–119.Google Scholar
  36. 36.
    Lebedev, N. N., and Krasnovsky, A. A., Jr. (1978) Biofizika, 23, 1095–1096.PubMedGoogle Scholar
  37. 37.
    Krasnovsky, A. A., Jr., and Kovalev, Yu. V. (1978) Biofizika, 23, 920–922.Google Scholar
  38. 38.
    Krasnovsky, A. A., Jr., Kovalev, Yu. V., and Faludi-Daniel, A. (1980) Dokl. AN SSSR (Biophys.), 251, 1264–1267.Google Scholar
  39. 39.
    Krasnovsky, A. A., Jr., Kovalev, Yu. V., Kukarskikh, G. P., and Gulayev, B. A. (1980) Biofizika, 25, 821–826.Google Scholar
  40. 40.
    Krasnovsky, A. A., Jr., Kovalev, Yu. V., and Lehoczki, E. (1981) Dokl. Akad. Nauk SSSR, 256, 726–730.Google Scholar
  41. 41.
    Kovalev, Yu. V., Krasnovsky, A. A., Jr., Lehoczki, E., and Maroti, I. (1981) Biofizika, 26, 891–893.PubMedGoogle Scholar
  42. 42.
    Krasnovsky, A. A., Jr. (1982) Photochem. Photobiol., 36, 733–741.CrossRefGoogle Scholar
  43. 43.
    Hoff, A. J. (1986) in Light Emission of Plant and Bacteria (Govindjee, Ametz, J., and Fork, D. C., eds.) Academic Press, New York, pp. 225–266.Google Scholar
  44. 44.
    Krasnovsky, A. A., Jr. (1994) Proc. Roy. Soc. Edinburgh, 102B, 219–235.Google Scholar
  45. 45.
    Krasnovsky, A. A., Jr. (1994) Biofizika, 39, 236–250.Google Scholar
  46. 46.
    Krasnovsky, A. A., Jr., and Semenova, A. N. (1981) Photobiochem. Photobiophys., 3, 11–18.Google Scholar
  47. 47.
    Krasnovsky, A. A., Jr., and Semenova, A. N. (1981) Dokl. Akad. Nauk SSSR, 257, 729–732.Google Scholar
  48. 48.
    Solovyov, K. N., Dvornikov, S. S., Knyukshto, B. N., and Turkova, A. E. (1983) J. Appl. Spectr. (Minsk), 38, 87–95.Google Scholar
  49. 49.
    Losev, A. P., Nichiporovich, I. N., Sagun, E. I., and Vasilenok, G. D. (1987) Dokl. AN BSSR, 31, 131–134.Google Scholar
  50. 50.
    Losev, A. P., Sagun, E. I., and Nichiporovich, I. N. (1987) Khim. Fizika, 6, 907–914.Google Scholar
  51. 51.
    Egorov, S. Yu., Krasnovsky, A. A., Jr., Vychegzanina, I. V., Drozdova, N. N., and Krasnovsky, A. A. (1990) Dokl. Akad. Nauk SSSR, 310, 471–474.Google Scholar
  52. 52.
    Raskin, V. I. (1981) Photoreduction of Protochlorophyllide [in Russian], Nauka i Tekhnika, Minsk.Google Scholar
  53. 53.
    Belyaeva, O. B. (2009) Light-Dependent Synthesis of Chlorophyll [in Russian], Binom, Moscow.Google Scholar
  54. 54.
    Lebedev, N. N., Krasnovsky, A. A., Jr., and Litvin, F. F. (1991) Photosynth. Res., 30, 7–14.PubMedGoogle Scholar
  55. 55.
    Krasnovsky, A. A., Jr., Belyaeva, O. B., Kovalev, Yu. V., Ignatov, N. V., and Litvin, F. F. (1999) Biochemistry (Moscow), 64, 587–591.Google Scholar
  56. 56.
    Ignatov, N. V., Krasnovsky, A. A., Jr., Litvin, F. F., Belyaeva, O. B., and Walter, G. (1983) Photosynthetica, 17, 352–360.Google Scholar
  57. 57.
    Egorov, S. Yu., Krasnovsky, A. A., Jr., and Kulakovskaia, L. I. (1985) Russ. Plant Physiol., 32, 668–673.Google Scholar
  58. 58.
    Butler, W. L. (1961) Arch. Biochem. Biophys., 92, 287–295.PubMedCrossRefGoogle Scholar
  59. 59.
    Krasnovsky, A. A., Jr., and Neverov, K. V. (1988) Dokl. AN SSSR, 302, 252–255.Google Scholar
  60. 60.
    Kovalev, Yu. V., and Krasnovsky, A. A., Jr. (1986) Biofizika, 31, 444–448.Google Scholar
  61. 61.
    Goedheer, J. C. (1964) Biochim. Biophys. Acta, 88, 304–317.PubMedGoogle Scholar
  62. 62.
    Murata, N., Nishimura, M., and Takamiya, A. (1966) Biochim. Biophys. Acta, 126, 234–243.PubMedCrossRefGoogle Scholar
  63. 63.
    Govindjee and Yang, L. (1966) J. Gen. Physiol., 49, 763–780.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Litvin, F. F., and Sineshchekov, V. A. (1975) in Bioenergetics of Photosynthesis (Govindjee, ed.) Academic Press, Inc., San Francisco, pp. 620–661.Google Scholar
  65. 65.
    Litvin, F. F., Shubin, V. V., and Sineshchekov, V. A. (1976) Biofizika, 21, 669–674.PubMedGoogle Scholar
  66. 66.
    Shlyk, A. A. (1975) in Biosynthesis and the State of Chlorophyll in Plants [in Russian], Nauka i Tekhnika, Minsk, pp. 104–160.Google Scholar
  67. 67.
    Neverov, K. V., Shalygo, N. Y., Averina, N. G., and Krasnovsky, A. A., Jr. (1996) Russ. Plant Physiol., 43, 62–73.Google Scholar
  68. 68.
    Takahashi, Y., Hansson, O., Mathis, P., and Satoh, H. (1987) Biochim. Biophys. Acta, 893, 49–59.CrossRefGoogle Scholar
  69. 69.
    Telfer, A., Dhami, S., Bishop, S. M., Phillips, D., and Barber, J. (1994) Biochemistry, 33, 14469–14474.PubMedCrossRefGoogle Scholar
  70. 70.
    Neverov, K. V., and Krasnovsky, A. A., Jr. (2004) Biofizika, 49, 493–498.PubMedGoogle Scholar
  71. 71.
    Santabarbara, S., Bordignon, E., Jeninngs, R. C., and Carbonera, D. (2002) Biochemistry, 41, 8184–8194.PubMedCrossRefGoogle Scholar
  72. 72.
    Krasnovsky, A. A., Jr. (1986) Zh. Vsesouz. Khim. Obshchestva im. D. I. Mendeleeva, 31, 562–567.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. A. KrasnovskyJr.
    • 1
    • 2
  • Yu. V. Kovalev
    • 2
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations