Biochemistry (Moscow)

, Volume 79, Issue 4, pp 324–336 | Cite as

Nano-sized manganese-calcium cluster in photosystem II

  • M. M. Najafpour
  • M. Z. Ghobadi
  • B. Haghighi
  • J. J. Eaton-Rye
  • T. Tomo
  • J. -R. Shen
  • S. I. Allakhverdiev
Review

Abstract

Cyanobacteria, algae, and plants are the manufacturers that release O2 via water oxidation during photosynthesis. Since fossil resources are running out, researchers are now actively trying to use the natural catalytic center of water oxidation found in the photosystem II (PS II) reaction center of oxygenic photosynthetic organisms to synthesize a biomimetic supercatalyst for water oxidation. Success in this area of research will transcend the current bottleneck for the development of energy-conversion schemes based on sunlight. In this review, we go over the structure and function of the water-oxidizing complex (WOC) found in Nature by focusing on the recent advances made by the international research community dedicated to achieve the goal of artificial water splitting based on the WOC of PS II.

Key words

manganese calcium nano-sized manganese-calcium cluster oxygen photosynthesis water oxidation wateroxidizing complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blankenship, R. E. (1992) Photosynth. Res., 33, 91–111.CrossRefGoogle Scholar
  2. 2.
    Knoll, A. H. (2003) Geobiology, 1, 3–14.CrossRefGoogle Scholar
  3. 3.
    Canfield, D. E. (2005) Annu. Rev. Earth Planet. Sci., 33, 1–36.CrossRefGoogle Scholar
  4. 4.
    Kazmierczak, J., and Altermann, W. (2002) Science, 298, 2351–2351.PubMedCrossRefGoogle Scholar
  5. 5.
    Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A. (1999) Nature, 400, 554–557.PubMedCrossRefGoogle Scholar
  6. 6.
    Olson, J. M., and Blankenship, R. E. (2004) Photosynth. Res., 80, 373–386.PubMedCrossRefGoogle Scholar
  7. 7.
    Schopf, J. W. (1975) Evolutionary Biology, Springer, Dordrecht, pp. 1–43.Google Scholar
  8. 8.
    Konhauser, K. O., Lalonde, S. V., Planavsky, N. J., Pecoits, E., Lyons, T. W., Mojzsis, S. J., Rouxel, O. J., Barley, M. E., Rosiere, C., and Fralick, P. W. (2011) Nature, 478, 369–373.PubMedCrossRefGoogle Scholar
  9. 9.
    Najafpour, M. M., Nemati, A. M., Shen, J. R., and Govindjee (2013) in Stress Biology of Cyanobacteria (Srivastava, A., Rai, A. N., and Neilan, B. A., eds.) CRC Press, London, pp. 41–60.Google Scholar
  10. 10.
    Roose, J. L., Wegener, K. M., and Pakrasi, H. B. (2007) Photosynth. Res., 92, 369–387.PubMedCrossRefGoogle Scholar
  11. 11.
    McEvoy, J. P., and Brudvig, G. W. (2006) Chem. Rev., 106, 4455–4483.PubMedCrossRefGoogle Scholar
  12. 12.
    Amunts, A., Toporik, H., Borovikova, A., and Nelson, N. (2010) J. Biol. Chem., 285, 3478–3486.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Sproviero, E. M., Gascon, J. A., McEvoy, J. P., Brudvig, G. W., and Batista, V. S. (2008) J. Am. Chem. Soc., 130, 3428–3442.PubMedCrossRefGoogle Scholar
  14. 14.
    Krasnovsky, A. A. (1960) Ann. Rev. Plant Physiol., 11, 363–410.CrossRefGoogle Scholar
  15. 15.
    Krasnovsky, A. A. (1965) Photochem. Photobiol., 4, 641–655.CrossRefGoogle Scholar
  16. 16.
    Krasnovsky, A. A. (1992) Photosynth. Res., 34, 327–328.PubMedCrossRefGoogle Scholar
  17. 17.
    Krasnovsky, A. A., Jr. (2007) Biochemistry (Moscow), 72, 1065–1080.CrossRefGoogle Scholar
  18. 18.
    Belyaeva, O. (2003) Photosynth. Res., 76, 405–411.PubMedCrossRefGoogle Scholar
  19. 19.
    Krasnovsky, A. A., Jr. (2003) Photosynth. Res., 76, 389–403.CrossRefGoogle Scholar
  20. 20.
    Krasnovsky, A. A., Jr. (2005) in Discoveries in Photosynthesis, Springer, Dordrecht, pp. 1143–1157.CrossRefGoogle Scholar
  21. 21.
    Krogmann, D. (2004) Photosynth. Res., 80, 15–57.PubMedCrossRefGoogle Scholar
  22. 22.
    Manning, W. M., and Strain, H. H. (1943) J. Biol. Chem., 151, 1–19.Google Scholar
  23. 23.
    Chen, M., Schliep, M., Willows, R. D., Cai, Z.-L., Neilan, B. A., and Scheer, H. (2010) Science, 329, 1318–1319.PubMedCrossRefGoogle Scholar
  24. 24.
    Raszewski, G., Diner, B. A., Schlodder, E., and Renger, T. (2008) Biophys. J., 95, 105–119.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Zapata, M., Garrido, J. L., and Jeffrey, S. W. (2006) in Chlorophylls and Bacteriochlorophylls, Springer, Dordrecht, pp. 39–53.CrossRefGoogle Scholar
  26. 26.
    Miyashita, H., Ikemoto, H., Kurano, N., Adachi, K., Chihara, M., and Miyachi, S. (1996) Nature, 383, 402–402.CrossRefGoogle Scholar
  27. 27.
    Chen, M., Quinnell, R. G., and Larkum, A. W. (2002) FEBS Lett., 514, 149–152.PubMedCrossRefGoogle Scholar
  28. 28.
    Tomo, T., Allakhverdiev, S. I., and Mimuro, M. (2011) J. Photochem. Photobiol. B, 104, 333–340.PubMedCrossRefGoogle Scholar
  29. 29.
    Hu, Q., Miyashita, H., Iwasaki, I., Kurano, N., Miyachi, S., Iwaki, M., and Itoh, S. (1998) Proc. Natl. Acad. Sci. USA, 95, 13319–13323.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Chen, M., Telfer, A., Lin, S., Pascal, A., Larkum, A. W., Barber, J., and Blankenship, R. E. (2005) Photochem. Photobiol. Sci., 4, 1060–1064.PubMedCrossRefGoogle Scholar
  31. 31.
    Tomo, T., Okubo, T., Akimoto, S., Yokono, M., Miyashita, H., Tsuchiya, T., Noguchi, T., and Mimuro, M. (2007) Proc. Natl. Acad. Sci. USA, 104, 7283–7288.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Allakhverdiev, S. I., Tomo, T., Shimada, Y., Kindo, H., Nagao, R., Klimov, V. V., and Mimuro, M. (2010) Proc. Natl. Acad. Sci. USA, 107, 3924–3929.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Allakhverdiev, S. I., Tsuchiya, T., Watabe, K., Kojima, A., Los, D. A., Tomo, T., Klimov, V. V., and Mimuro, M. (2011) Proc. Natl. Acad. Sci. USA, 108, 8054–8058.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Willows, R. D., Li, Y., Scheer, H., and Chen, M. (2013) Org. Lett., 15, 1588–1590.PubMedCrossRefGoogle Scholar
  35. 35.
    Barber, J. (2012) Cold Spring Harbor Symp. on Quantitative Biology.Google Scholar
  36. 36.
    Brudvig, G. (2008) Ser. B. Biol. Sci., 363, 1211–1218.CrossRefGoogle Scholar
  37. 37.
    Golbeck, J. H. (2006) Photosystem I: the Light-Driven Plastocyanine: Ferredoxin Oxidoreductase, Springer.Google Scholar
  38. 38.
    Kallas, T. (2012) in Photosynthesis (Eaton-Rye, J. J., Tripathy, B. C., and Sharkey, T. D., eds.) Springer, Dordrecht, pp. 501–560.Google Scholar
  39. 39.
    Vermaas, W. F. (2001) Photosynthesis and Respiration in Cyanobacteria, John Wiley and Sons, Singapore.Google Scholar
  40. 40.
    Jee, G., Kambara, T., and Coleman, W. (1985) Photochem. Photobiol., 42, 187–210.CrossRefGoogle Scholar
  41. 41.
    Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. (2001) Nature, 409, 739–743.PubMedCrossRefGoogle Scholar
  42. 42.
    Kamiya, N., and Shen, J.-R. (2003) Proc. Natl. Acad. Sci. USA, 100, 98–103.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J., and Iwata, S. (2004) Science, 303, 1831–1838.PubMedCrossRefGoogle Scholar
  44. 44.
    Yano, J., Kern, J., Sauer, K., Latimer, M. J., Pushkar, Y., Biesiadka, J., Loll, B., Saenger, W., Messinger, J., and Zouni, A. (2006) Science, 314, 821–825.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Umena, Y., Kawakami, K., Shen, J.-R., and Kamiya, N. (2011) Nature, 473, 55–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Kawakami, K., Umena, Y., Kamiya, N., and Shen, J.-R. (2011) J. Photochem. Photobiol. B, 104, 9–18.PubMedCrossRefGoogle Scholar
  47. 47.
    Pirson, A. (1937) Z. Bot., 31, 193–267.Google Scholar
  48. 48.
    Jaklevic, J., Kirby, J., Klein, M., Robertson, A., Brown, G., and Eisenberger, P. (1977) Solid State Commun., 23, 679–682.CrossRefGoogle Scholar
  49. 49.
    Armstrong, F. A. (2008) Biol. Sci., 363, 1263–1270.CrossRefGoogle Scholar
  50. 50.
    Pearson, R. G. (1963) J. Am. Chem. Soc., 85, 3533–3539.CrossRefGoogle Scholar
  51. 51.
    Ghanotakis, D. F., Babcock, G. T., and Yocum, C. F. (1984) FEBS Lett., 167, 127–130.CrossRefGoogle Scholar
  52. 52.
    Lee, C.-I., Lakshmi, K., and Brudvig, G. W. (2007) Biochemistry, 46, 3211–3223.PubMedCrossRefGoogle Scholar
  53. 53.
    Latimer, M. J., DeRose, V. J., Yachandra, V. K., Sauer, K., and Klein, M. P. (1998) J. Phys. Chem. B, 102, 8257–8265.CrossRefGoogle Scholar
  54. 54.
    Boussac, A., and Rutherford, A. W. (1988) Biochemistry, 27, 3476–3483.CrossRefGoogle Scholar
  55. 55.
    Koua, F. H. M., Umena, Y., Kawakami, K., and Shen, J.-R. (2013) Proc. Natl. Acad. Sci. USA, 110, 3889–3894.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Pushkar, Y., Yano, J., Sauer, K., Boussac, A., and Yachandra, V. K. (2008) Proc. Natl. Acad. Sci. USA, 105, 1879–1884.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Cox, N., Rapatskiy, L., Su, J.-H., Pantazis, D. A., Sugiura, M., Kulik, L., Dorlet, P., Rutherford, A. W., Neese, F., and Boussac, A. (2011) J. Am. Chem. Soc., 133, 3635–3648.PubMedCrossRefGoogle Scholar
  58. 58.
    Arnon, D. I., and Whatley, F. R. (1949) Science, 110, 554–556.PubMedCrossRefGoogle Scholar
  59. 59.
    Yocum, C. F. (2008) Coord. Chem. Rev., 252, 296–305.CrossRefGoogle Scholar
  60. 60.
    Izawa, S., Heath, R., and Hind, G. (1969) Biochim. Biophys. Acta, 180, 388–398.PubMedCrossRefGoogle Scholar
  61. 61.
    Rivalta, I., Amin, M., Luber, S., Vassiliev, S., Pokhrel, R., Umena, Y., Kawakami, K., Shen, J.-R., Kamiya, N., and Bruce, D. (2011) Biochemistry, 50, 6312–6315.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Renger, G. (2008) Primary Processes of Photosynthesis: Principles and Apparatus, Royal Society of Chemistry, London.Google Scholar
  63. 63.
    Wiechen, M., Berends, H.-M., and Kurz, P. (2012) Dalton Trans., 41, 21–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Joliot, P., Barbieri, G., and Chabaud, R. (1969) Photochem. Photobiol., 10, 309–329.CrossRefGoogle Scholar
  65. 65.
    Forbush, B., Kok, B., and McGloin, M. P. (1971) Photochem. Photobiol., 14, 307–321.CrossRefGoogle Scholar
  66. 66.
    Pecoraro, V. L., Baldwin, M. J., Caudle, M. T., Hsieh, W. Y., and Law, N. A. (1998) Pure Appl. Chem., 70, 925–930.CrossRefGoogle Scholar
  67. 67.
    Siegbahn, P. E. M. (2013) Biochim. Biophys. Acta, 1827, 1003–1019.PubMedCrossRefGoogle Scholar
  68. 68.
    Ruettinger, W., Yagi, M., Wolf, K., Bernasek, S., and Dismukes, G. (2000) J. Am. Chem. Soc., 122, 10353–10357.CrossRefGoogle Scholar
  69. 69.
    Yachandra, V. K., Sauer, K., and Klein, M. P. (1996) Chem. Rev., 96, 2927–2950.PubMedCrossRefGoogle Scholar
  70. 70.
    Glatzel, P., Schroeder, H., Pushkar, Y., Boron, T., Mukherjee, S., Christou, G., Pecoraro, V. L., Messinger, J., Yachandra, V. K., Bergmann, U., and Yano, J. (2013) Inorg. Chem., 52, 5642–5644.PubMedCrossRefGoogle Scholar
  71. 71.
    Du, P., and Eisenberg, R. (2012) Energy Environ. Sci., 5, 6012–6021.CrossRefGoogle Scholar
  72. 72.
    Najafpour, M. M., and Allakhverdiev, S. I. (2012) Int. J. Hydrogen Energ., 37, 8753–8764.CrossRefGoogle Scholar
  73. 73.
    Najafpour, M. M., Abasi, M., and Allakhverdiev, S. I. (2013) SOAJ NanoPhotoBioSciences, 1, 79–92.Google Scholar
  74. 74.
    Soriano-Lopez, J., Goberna-Ferron, S., Vigara, L., Carbo, J. J., Poblet, J. M., and Galan-Mascaros, J. R. (2013) Inorg. Chem., 52, 4753–4755.PubMedCrossRefGoogle Scholar
  75. 75.
    Debus, R. J. (2008) Coord. Chem. Rev., 252, 244–258.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Najafpour, M. M., Moghaddam, A. N., and Allakhverdiev, S. I. (2012) Biochim. Biophys. Acta, 1817, 1110–1121.PubMedCrossRefGoogle Scholar
  77. 77.
    Scheer, H. (ed.) (1991) Chlorophylls, CRC Press, Boca Raton, pp. 3–30.Google Scholar
  78. 78.
    Szabo, I., Bergantino, E., and Giacometti, G. M. (2005) EMBO Rep., 6, 629–634.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Barber, J. (2008) Inorg. Chem., 47, 1700–1710.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. M. Najafpour
    • 1
    • 2
  • M. Z. Ghobadi
    • 1
  • B. Haghighi
    • 1
    • 2
  • J. J. Eaton-Rye
    • 3
  • T. Tomo
    • 4
    • 5
  • J. -R. Shen
    • 6
  • S. I. Allakhverdiev
    • 7
    • 8
  1. 1.Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  2. 2.Center of Climate Change and Global WarmingInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  3. 3.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  4. 4.Department of Biology, Faculty of ScienceTokyo University of ScienceTokyoJapan
  5. 5.PRESTOJapan Science and Technology Agency (JST)SaitamaJapan
  6. 6.Graduate School of Natural Science and Technology, Faculty of Science, Photosynthesis Research CenterOkayama UniversityOkayamaJapan
  7. 7.Controlled Photobiosynthesis Laboratory, Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  8. 8.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations