Advertisement

Biochemistry (Moscow)

, Volume 79, Issue 3, pp 260–272 | Cite as

Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants

  • V. V. PtushenkoEmail author
  • O. S. Ptushenko
  • A. N. Tikhonov
Article

Abstract

Parameters of chlorophyll fluorescence induction (CFI) are widely used for assessment of the physiological state of higher plant leaves in biochemical, physiological, and ecological studies and in agricultural applications. In this work we have analyzed data on variability of some CFI parameters — Φ PSII max = F v/F m (relative value of variable fluorescence), q NPQ (non-photochemical quenching coefficient), R Fd (“vitality index”) — in autumnal leaves of ten arboreous plant species of the temperate climatic zone. The correlation between the chlorophyll content in the leaves and fluorescence parameters characterizing photosynthetic activity is shown for two representative species, the small-leaved linden Tilia cordata and the rowan tree Sorbus aucuparia. During the period of mass yellowing of the leaves, the Φ PSII max value can be used as an adequate characteristic of their photochemical activity, while in summer the q NPQ or R Fd values are more informative. We have established a correlation between the Φ PSII max value, which characterizes the maximal photochemical activity of the photosystem II, and “chromaticity coordinates” of a leaf characterizing its color features. The chromaticity coordinates determined from the optical reflection spectra of the leaves serve as a quantitative measure of their hues, and this creates certain prerequisites for a visual expert assessment of the physiological state of the leaves.

Key words

photosynthesis chlorophyll fluorescence chromaticity characteristics of leaves 

Abbreviations

Car

carotenoids

CFI

chlorophyll fluorescence induction

Chl

chlorophyll

CIE

International Commission on Illumination (fr. Commission internationale de l’éclairage)

NPQ

non-photochemical quenching

PSI

photosystem I

PSII

photosystem II

PSA

photosynthetic apparatus

qNPQ

non-photochemical fluorescence quenching coefficient, q NPQ = = (F mF m′)/F m

RFd

“vitality index”, R Fd = (F MF T)/F T

ΦPSII

efficiency of PSII photochemical activity, Φ PSII = (F m′ − F′)/F m

ΦPSIIst.st.

steady-state value of the PSII photochemical activity

ΦPSIImax

maximal efficiency of PSII photochemical activity, Φ PSII max = F v/F m

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Venediktov, P. S., Volgin, S. L., Kazimirko, Y. V., Krendeleva, T. E., Kukarskikh, G. P., Makarova, V. V., Lavrukhina, O. G., Pogosyan, S. I., Yakovleva, O. V., and Rubin, A. B. (1999) Biofizika, 44, 1037–1047.Google Scholar
  2. 2.
    Rubin, A. B. (2005) Tekhnol. Zhivykh Sistem, 2, 47–68.Google Scholar
  3. 3.
    Karapetyan, N. V., and Bukhov, N. G. (1986) Soviet Plant Physiol., 33, 1013–1026.Google Scholar
  4. 4.
    Kalaji, H. M., Goltsev, V., Bosa, K., Allakhverdiev, S. I., and Strasser, R. J. (2012) Photosynth. Res., 114, 69–96.PubMedCrossRefGoogle Scholar
  5. 5.
    Rabinowitch, E. I. (1951) Photosynthesis and Related Processes, Vol. II, Interscience Publishers, Inc., New York-London.Google Scholar
  6. 6.
    Govindjee (1995) Austral. J. Plant Physiol., 22, 131–160.CrossRefGoogle Scholar
  7. 7.
    Adams, W. W., III, and Demmig-Adams, B. (2004) in Chlorophyll and Fluorescence, Springer, pp. 583–604.CrossRefGoogle Scholar
  8. 8.
    Maxwell, K., and Johnson, G. N. (2000) J. Exp. Bot., 51, 659–668.PubMedCrossRefGoogle Scholar
  9. 9.
    Baker, N. R. (2008) Annu. Rev. Plant Biol., 59, 89–113.PubMedCrossRefGoogle Scholar
  10. 10.
    Ptushenko, V. V., Ptushenko, E. A., Samoilova, O. P., and Tikhonov, A. N. (2013) Biosystems, 114, 85–97.PubMedCrossRefGoogle Scholar
  11. 11.
    Samoilova, O. P., Ptushenko, V. V., Kuvykin, I. V., Kiselev, S. A., Ptushenko, O. S., and Tikhonov, A. N. (2011) Biosystems, 105, 41–48.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu, Y. F., Qi, M. F., and Li, T. L. (2012) Plant Sci., 196, 8–17.PubMedCrossRefGoogle Scholar
  13. 13.
    Buonasera, K., Lambreva, M., Rea, G., Touloupakis, E., and Giardi, M. T. (2011) Anal. Bioanal. Chem., 401, 1139–1151.PubMedCrossRefGoogle Scholar
  14. 14.
    Kautsky, H., and Hirsch, A. (1931) Naturwissenschaften, 19, 964.CrossRefGoogle Scholar
  15. 15.
    Schreiber, U., Schliwa, U., and Bilger, W. (1986) Photosynth. Res., 10, 51–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Kirzhanov, D. V., and Kukushkin, A. K. (2009) Vestnik Mosk. Univer. Ser. 3. Fiz. Astron., 6, 65–69.Google Scholar
  17. 17.
    Tikhonov, A. N. (2013) Photosynth. Res., 116, 511–534.PubMedCrossRefGoogle Scholar
  18. 18.
    Bilger, W., and Bjorkman, O. (1994) Planta, 193, 238–246.CrossRefGoogle Scholar
  19. 19.
    Krasnovsky, A. A., Jr. (2007) Biochemistry (Moscow), 72, 1065–1080.CrossRefGoogle Scholar
  20. 20.
    Krasnovsky, A. A., Jr. (1998) Membr. Cell Biol., 12, 665–690.PubMedGoogle Scholar
  21. 21.
    Krieger-Liszkay, A. (2005) J. Exp. Bot., 56, 337–346.PubMedCrossRefGoogle Scholar
  22. 22.
    Demmig-Adams, B., Cohu, C. M., Muller, O., and Adams, W. W., III (2012) Photosynth. Res., 113, 75–88.PubMedCrossRefGoogle Scholar
  23. 23.
    Lambrev, P. H., Miloslavina, Y., Jahns, P., and Holzwarth, A. R. (2012) Biochim. Biophys. Acta — Bioenerg., 1817, 760–769.CrossRefGoogle Scholar
  24. 24.
    Muller, P., Li, X.-P., and Niyogi, K. K. (2001) Plant Physiol., 125, 1558–1566.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Heber, U., Lange, O. L., and Shuvalov, V. A. (2006) J. Exp. Bot., 57, 1211–1223.PubMedCrossRefGoogle Scholar
  26. 26.
    Lichtenthaler, H. K., Buschmann, C., Rinderle, U., and Schmuck, G. (1986) Radiat. Environ. Biophys., 25, 297–308.PubMedCrossRefGoogle Scholar
  27. 27.
    Lichtenthaler, H. K., Buschmann, C., and Knapp, M. (2005) Photosynthetica, 43, 379–393.CrossRefGoogle Scholar
  28. 28.
    Karavaev, V. A., Polyakova, I. B., Solntsev, M. K., and Yurina, T. P. (1998) J. Luminescence, 76, 335–338.CrossRefGoogle Scholar
  29. 29.
    Ptushenko, V. V., Karavaev, V. A., Solntsev, M. K., and Tikhonov, A. N. (2013) Biophysics (Moscow), 58, 228–233.CrossRefGoogle Scholar
  30. 30.
    Strasser, R. J., Tsimilli-Michael, M., and Srivastava, A. (2004) in Chlorophyll and Fluorescence, Springer, pp. 321–362.CrossRefGoogle Scholar
  31. 31.
    Rohacek, K. (2002) Photosynthetica, 40, 13–29.CrossRefGoogle Scholar
  32. 32.
    Lichtenthaler, H. K. (1987) J. Plant Physiol., 131, 101–110.CrossRefGoogle Scholar
  33. 33.
    Lu, C., and Zhang, J. (1998) Physiol. Plant., 104, 239–247.CrossRefGoogle Scholar
  34. 34.
    Adams, W. W., Winter, K., Schreiber, U., and Schramel, P. (1990) Plant Physiol., 92, 1184–1190.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Merzlyak, M. N., Solovchenko, A. E., and Gitelson, A. A. (2003) Postharvest Biol. Technol., 27, 197–211.CrossRefGoogle Scholar
  36. 36.
    Merzlyak, M. N., Solovchenko, A. E., Smagin, A. I., and Gitelson, A. A. (2005) J. Plant Physiol., 162, 151–160.PubMedCrossRefGoogle Scholar
  37. 37.
    Solovchenko, A. (2010) Photoprotection in Plants: Optical Screening-Based Mechanisms, Vol. 14, Springer.CrossRefGoogle Scholar
  38. 38.
    Djudd, D., and Vishecky, G. (1975) Color in Business, Science and Industry, John Wiley & Sons, New York-London-Sydney-Toronto.Google Scholar
  39. 39.
    Lichtenthaler, H. K. (1987) Methods Enzymol., 148, 350–382.CrossRefGoogle Scholar
  40. 40.
    Bjorkman, O., and Demmig, B. (1987) Planta, 170, 489–504.PubMedCrossRefGoogle Scholar
  41. 41.
    Johnson, G. N., Young, A. J., Scholes, J. D., and Horton, P. (1993) Plant Cell Environ., 16, 673–679.CrossRefGoogle Scholar
  42. 42.
    MacAdam, D. L. (1942) J. Opt. Soc. Am., 32, 247–273.CrossRefGoogle Scholar
  43. 43.
    MacAdam, D. L. (1943) J. Opt. Soc. Am., 33, 18–26.CrossRefGoogle Scholar
  44. 44.
    Genty, B., Briantais, J.-M., and Baker, N. R. (1989) Biochim. Biophys. Acta, 990, 87–92.CrossRefGoogle Scholar
  45. 45.
    Fryer, M. J., Andrews, J. R., Oxborough, K., Blowers, D. A., and Baker, N. R. (1998) Plant Physiol., 116, 571–580.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Lazar, D. (2003) J. Theor. Biol., 220, 469–503.PubMedCrossRefGoogle Scholar
  47. 47.
    Zivcak, M., Brestic, M., Balatova, Z., Drevenakova, P., Olsovska, K., Kalaji, H. M., Yang, X., and Allakhverdiev, S. I. (2013) Photosynth. Res., 117, 529–546.PubMedCrossRefGoogle Scholar
  48. 48.
    Krasnovsky, A. A., and Brin, G. P. (1947) Dokl. Akad. Nauk SSSR, 58, 1087–1090.Google Scholar
  49. 49.
    Krasnovsky, A. A. (1948) Dokl. Akad. Nauk SSSR, 61, 91–94.Google Scholar
  50. 50.
    Shuvalov, V. A., and Heber, U. (2003) Chem. Phys., 294, 227–237.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. V. Ptushenko
    • 1
    • 2
    Email author
  • O. S. Ptushenko
    • 3
  • A. N. Tikhonov
    • 2
    • 4
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Secondary School No. 261MoscowRussia
  4. 4.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations