Biochemistry (Moscow)

, Volume 79, Issue 3, pp 251–259 | Cite as

Size variability of the unit building block of peripheral light-harvesting antennas as a strategy for effective functioning of antennas of variable size that is controlled in vivo by light intensity

  • A. S. Taisova
  • A. G. Yakovlev
  • Z. G. FetisovaEmail author


This work continuous a series of studies devoted to discovering principles of organization of natural antennas in photosynthetic microorganisms that generate in vivo large and highly effective light-harvesting structures. The largest antenna is observed in green photosynthesizing bacteria, which are able to grow over a wide range of light intensities and adapt to low intensities by increasing of size of peripheral BChl c/d/e antenna. However, increasing antenna size must inevitably cause structural changes needed to maintain high efficiency of its functioning. Our model calculations have demonstrated that aggregation of the light-harvesting antenna pigments represents one of the universal structural factors that optimize functioning of any antenna and manage antenna efficiency. If the degree of aggregation of antenna pigments is a variable parameter, then efficiency of the antenna increases with increasing size of a single aggregate of the antenna. This means that change in degree of pigment aggregation controlled by light-harvesting antenna size is biologically expedient. We showed in our previous work on the oligomeric chlorosomal BChl c superantenna of green bacteria of the Chloroflexaceae family that this principle of optimization of variable antenna structure, whose size is controlled by light intensity during growth of bacteria, is actually realized in vivo. Studies of this phenomenon are continued in the present work, expanding the number of studied biological materials and investigating optical linear and nonlinear spectra of chlorosomes having different structures. We show for oligomeric chlorosomal superantennas of green bacteria (from two different families, Chloroflexaceae and Oscillochloridaceae) that a single BChl c aggregate is of small size, and the degree of BChl c aggregation is a variable parameter, which is controlled by the size of the entire BChl c superantenna, and the latter, in turn, is controlled by light intensity in the course of cell culture growth.

Key words

photosynthesis structure and function peripheral antennas 



differential absorption








photosynthetic unit


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fetisova, Z. G., and Fok, M. V. (1984) Mol. Biol. (Moscow), 18, 1651–1656.Google Scholar
  2. 2.
    Fetisova, Z. G., Fok, M. V., and Shibaeva, L. V. (1985) Mol. Biol. (Moscow), 19, 983–991.Google Scholar
  3. 3.
    Timpmann, K. E., Freiberg, A. M., and Fetisova, Z. G. (1988) Dokl. Akad. Nauk SSSR, 302, 976–979.Google Scholar
  4. 4.
    Fetisova, Z. G., Freiberg, A. M., and Timpmann, K. E. (1988) Nature, 334, 633–634.CrossRefGoogle Scholar
  5. 5.
    Fetisova, Z. G., Shibaeva, L. V., and Fok, M. V. (1989) J. Theor. Biol., 140, 167–184.CrossRefGoogle Scholar
  6. 6.
    Fetisova, Z. G., and Mauring, K. (1992) FEBS Lett., 307, 371–374.PubMedCrossRefGoogle Scholar
  7. 7.
    Fetisova, Z. G., Mauring, K., and Taisova, A. S. (1994) Photosynth. Res., 41, 205–210.PubMedCrossRefGoogle Scholar
  8. 8.
    Fetisova, Z. G., Shibaeva, L. V., and Taisova, A. S. (1995) Mol. Biol. (Moscow), 29, 1384–1390.Google Scholar
  9. 9.
    Mauring, K., Taisova, A. S., Novoderezhkin, V. I., Shibaeva, L. V., and Fetisova, Z. G. (1996) Mol. Biol. (Moscow), 30, 442–448.Google Scholar
  10. 10.
    Krasnovsky, A. A., and Bystrova, M. I. (1980) Biosystems, 12, 181–194.PubMedCrossRefGoogle Scholar
  11. 11.
    Fetisova, Z. G. (2004) Mol. Biol. (Moscow), 38, 515–523.CrossRefGoogle Scholar
  12. 12.
    Yakovlev, A. G., Taisova, A. S., and Fetisova, Z. G. (2004) Mol. Biol. (Moscow), 38, 524–531.CrossRefGoogle Scholar
  13. 13.
    Keppen, O. I., Tourova, T. P., Kuznetsov, B. B., Ivanovsky, R. N., and Gorlenko, V. M. (2000) Int. J. System. Evol. Microbiol., 50, 1529–1537.CrossRefGoogle Scholar
  14. 14.
    Taisova, A. S., Keppen, O. I., Lukashev, E. P., Arutyunyan, A. M., and Fetisova, Z. G. (2002) Photosynth. Res., 74, 73–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Gupta, R. S., Chander, P., and George, S. (2013) Antonie van Leeuwenhoek, 103, 99–119.PubMedCrossRefGoogle Scholar
  16. 16.
    Orf, G. S., and Blankenship, R. E. (2013) Photosynth. Res., 116, 315–331.PubMedCrossRefGoogle Scholar
  17. 17.
    Oostergetel, G. T., van Amerongen, H., and Boekema, E. J. (2010) Photosynth. Res., 104, 245–255.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Staehelin, L. A., Golecki, J. R., Fuller, R. C., and Drews, G. (1978) Arch. Microbiol., 119, 269–277.CrossRefGoogle Scholar
  19. 19.
    Staehelin, L. A., Golecki, J. R., and Drews, G. (1980) Biochim. Biophys. Acta, 589, 30–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Psencik, J., Ikonen, T. P., Laurinmaki, P., Merckel, M. C., Butcher, S. J., Serimaa, R. E., and Tuma, R. (2004) Biophys. J., 87, 1165–1172.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Linnanto, J. M., and Korppi-Tommola, J. E. I. (2013) J. Phys. Chem. B, 117, 11144–11161.PubMedCrossRefGoogle Scholar
  22. 22.
    Fetisova, Z. G., Freiberg, A. M., Mauring, K., Novoderezhkin, V. I., Taisova, A. S., and Timpmann, K. E. (1996) Biophys. J., 71, 995–1010.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Novoderezhkin, V. I., and Fetisova, Z. G. (1996) Biochem. Mol. Biol. Int., 40, 243–252.PubMedGoogle Scholar
  24. 24.
    Dracheva, T. V., Taisova, A. S., and Fetisova, Z. G. 1998 in Photosynthesis: Mechanisms and Effects, Vol. 1 (Garab, G., ed.) Kluwer Academic Publishers, The Netherlands, pp. 129–132.Google Scholar
  25. 25.
    Novoderezhkin, V. I., Taisova, A. S., and Fetisova, Z. G. (2001) Chem. Phys. Lett., 335, 234–240.CrossRefGoogle Scholar
  26. 26.
    Yakovlev, A. G., Novoderezhkin, V. I., Taisova, A. S., and Fetisova, Z. G. (2002) Photosynth. Res., 71, 19–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Pierson, B. K., and Castenholz, R. W. (1974) Arch. Microbiol., 100, 283–305.CrossRefGoogle Scholar
  28. 28.
    Taisova, A. S., Keppen, O. I., and Fetisova, Z. G. (2004) Biofizika (Moscow), 49, 1069–1074.Google Scholar
  29. 29.
    Feick, R. G., Fitzpatrick, M., and Fuller, R. C. (1982) J. Bacteriol., 150, 905–915.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Van Dorssen, R. J., Vasmel, H., and Amesz, J. (1986) Photosynth. Res., 9, 33–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Mukamel, S. (1995) Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York-Oxford.Google Scholar
  32. 32.
    Novoderezhkin, V., Monshouwer, R., and van Grondelle, R. (1999) J. Phys. Chem. B, 103, 10540–10548.CrossRefGoogle Scholar
  33. 33.
    Savikhin, S., Buck, D. R., Struve, W. S., Blankenship, R. E., Taisova, A. S., Novoderezhkin, V. I., and Fetisova, Z. G. (1998) FEBS Lett., 430, 323–326.PubMedCrossRefGoogle Scholar
  34. 34.
    Meier, T., Chernyak, V., and Mukamel, S. (1997) J. Phys. Chem. B, 101, 7332–7342.CrossRefGoogle Scholar
  35. 35.
    Nagarajan, V., Johnson, E. T., Williams, J. C., and Parson, W. W. (1999) J. Phys. Chem. B, 103, 2297–2309.CrossRefGoogle Scholar
  36. 36.
    Pullerits, T., Chachisvilis, M., and Sundstrom, V. (1996) J. Phys. Chem. B, 100, 10787–10792.CrossRefGoogle Scholar
  37. 37.
    Novoderezhkin, V. I., and Fetisova, Z. G. (1999) Biophys. J., 77, 424–430.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Keppen, O. I. (2010) in Works of S. N. Vinogradsky Institute of Microbiology, Issue 15. Photosynthesizing Microorganisms (Galchenko, V. F., ed.) [in Russian], Maks Press, Moscow, pp. 196–222.Google Scholar
  39. 39.
    Taisova, A. S., Gülen, D., Iseri, E. I., Drachev, V. A., Cherenkova, T. A., and Fetisova, Z. G. (2001) Thesis of XII Int. Congr. on Photosynthesis (Brisbane, Australia), Abstr. S1–006.Google Scholar
  40. 40.
    Yildirim, H., Iseri, I., and Gülen, D. (2004) Chem. Phys. Lett., 391, 302–307.CrossRefGoogle Scholar
  41. 41.
    Gülen, D. (2006) Photosynth. Res., 87, 205–214.PubMedCrossRefGoogle Scholar
  42. 42.
    Hartigan, N., Tharia, H. A., Sweeney, F., Lawless, A. M., and Papiz, M. Z. (2002) Biophys. J., 82, 963–977.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. S. Taisova
    • 1
  • A. G. Yakovlev
    • 1
  • Z. G. Fetisova
    • 1
    Email author
  1. 1.Belozersky Research Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations