Advertisement

Biochemistry (Moscow)

, Volume 79, Issue 3, pp 242–250 | Cite as

From localized excited states to excitons: Changing of conceptions of primary photosynthetic processes in the twentieth century

  • R. Y. Pishchalnikov
  • A. P. RazjivinEmail author
Article

Abstract

A short description of two theories of the primary photosynthetic processes is given. Generally accepted in 1950s–1990s, the localized excited states theory has been changed to the modern exciton theory. Appearance of the new experimental data and the light-harvesting complex crystal structure are reasons why the exciton theory has become important. The bulk of data for the old theory and outstanding experiments that have been the driving force for a new theory are discussed in detail.

Key words

photosynthesis energy transfer excitons light-harvesting antenna Redfield’s theory 

Abbreviations

(B)Chl

(bacterio)chlorophyll

GA

genetic algorithms

LH1

core light-harvesting complex

LH2

peripheral light-harvesting complex

PS1

photosystem 1

PS2

photosystem 2

RC

reaction center

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rabinowitch, E. (1959) Plant Physiol., 34, 213–218.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Rabinowitch, E. (1961) Physics-Uspekhy, 74, 289–302.Google Scholar
  3. 3.
    Borisov, A. Y. (1978) in The Photosynthetic Bacteria (Clayton, R. K., and Sistrom, W. R., eds.) Academic Press, New York, pp. 323–333.Google Scholar
  4. 4.
    Borisov, A. Y., Gadonas, R. A., Danielius, R. V., Piskarskas, A. S., and Razjivin, A. P. (1982) FEBS Lett., 138, 25–28.Google Scholar
  5. 5.
    Razjivin, A. P., Danielius, R. V., Gadonas, R. A., Borisov, A. Y., and Piskarskas, A. S. (1982) FEBS Lett., 143, 40–44.Google Scholar
  6. 6.
    Abdourakhmanov, I. A., Danielius, R. V., and Razjivin, A. P. (1989) FEBS Lett., 245, 47–50.Google Scholar
  7. 7.
    Danielius, R. V., Mineyev, A. P., and Razjivin, A. P. (1989) FEBS Lett., 250, 183–186.Google Scholar
  8. 8.
    Novoderezhkin, V. I., and Razjivin, A. P. (1993) FEBS Lett., 330, 5–7.PubMedGoogle Scholar
  9. 9.
    Novoderezhkin, V. I., and Razjivin, A. P. (1994) Photosynth. Res., 42, 9–15.PubMedGoogle Scholar
  10. 10.
    Novoderezhkin, V. I., and Razjivin, A. P. (1995) Biophys. J., 68, 1089–1100.PubMedCentralPubMedGoogle Scholar
  11. 11.
    McDermott, G., Prince, S. M., Freer, A. A., Hawthornthwaite-Lawless, A. M., Papiz, M. Z., Cogdell, R. J., and Isaacs, N. W. (1995) Nature, 374, 517–521.Google Scholar
  12. 12.
    Koepke, J., Hu, X. C., Muenke, C., Schulten, K., and Michel, H. (1996) Structure, 4, 581–597.PubMedGoogle Scholar
  13. 13.
    Dracheva, T. V., Novoderezhkin, V. I., and Razjivin, A. P. (1996) FEBS Lett., 387, 81–84.PubMedGoogle Scholar
  14. 14.
    Alden, R. G., Johnson, E., Nagarajan, V., and Parson, W. W. (1997) J. Phys. Chem. B, 101, 4667–4680.Google Scholar
  15. 15.
    Cogdell, R. J., Isaacs, N. W., Freer, A. A., Arrelano, J., Howard, T. D., Papiz, M. Z., Hawthornthwaite-Lawless, A. M., and Prince, S. (1997) Prog. Biophys. Mol. Biol., 68, 1–27.PubMedGoogle Scholar
  16. 16.
    Novoderezhkin, V., Monshouwer, R., and van Grondelle, R. (1999) J. Phys. Chem. B, 103, 10540–10548.Google Scholar
  17. 17.
    Bakalis, L. D., Coca, M., and Knoester, J. (1999) J. Chem. Phys., 110, 2208–2218.Google Scholar
  18. 18.
    Sundstrom, V., Pullerits, T., and van Grondelle, R. (1999) J. Phys. Chem. B, 103, 2327–2346.Google Scholar
  19. 19.
    Brown, A. H., and Frenkel, A. W. (1953) Annu. Rev. Plant Physiol. Plant Mol. Biol., 4, 23–58.Google Scholar
  20. 20.
    Calvin, M., Bassham, J. A., Benson, A. A., and Massini, P. (1952) Annu. Rev. Phys. Chem., 3, 215–228.Google Scholar
  21. 21.
    Lumry, R., Spikes, J. D., and Eyring, H. (1953) Annu. Rev. Phys. Chem., 4, 399–424.Google Scholar
  22. 22.
    Rabinowitch, E. (1952) Annu. Rev. Plant Physiol. Plant Mol. Biol., 3, 229–264.Google Scholar
  23. 23.
    Emerson, R., and Arnold, W. (1932) J. Gen. Physiol., 16, 191–205.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Emerson, R., and Arnold, W. (1932) J. Gen. Physiol., 15, 391–420.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Gaffron, H., and Wohl, K. (1936) Naturwissenschaften, 24, 103–107.Google Scholar
  26. 26.
    Gaffron, H. (1936) Biochemische Zeitschrift, 287, 130–139.Google Scholar
  27. 27.
    Rabinowitch, E. (1945) Photosynthesis and Related Processes. Chemistry of Photosynthesis, Chemosynthesis and Related Processes in vitro and in vivo, Interscience Publishers Inc., New York, http://www.life.illinois.edu/govindjee/ElectronicPublications/Books.Google Scholar
  28. 28.
    Hodge, A. J., McLean, J. D., and Mercer, F. V. (1955) J. Biophys. Biochem. Cytol., 1, 605–614.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Jacobs, E. E., Holt, A. S., Kromhout, R., and Rabinowitch, E. (1957) Arch. Biochem. Biophys., 72, 495–511.PubMedGoogle Scholar
  30. 30.
    Wolken, J. J., and Schwertz, F. A. (1953) J. Gen. Physiol., 37, 111–120.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Forster, T. (1948) Annalen der Physik, 2, 55–75.Google Scholar
  32. 32.
    Novoderezhkin, V. I., and Razjivin, A. P. (1993) FEBS Lett., 330, 5–7.PubMedGoogle Scholar
  33. 33.
    Dracheva, T. V., Novoderezhkin, V. I., and Razjivin, A. P. (1995) Chem. Phys., 194, 223–235.Google Scholar
  34. 34.
    Novoderezhkin, V. I., and Razjivin, A. P. (1995) Photosynthetica, 31, 147–151.Google Scholar
  35. 35.
    Dracheva, T. V., Novoderezhkin, V. I., and Razjivin, A. P. (1996) FEBS Lett., 387, 81–84.PubMedGoogle Scholar
  36. 36.
    Raszewski, G., and Renger, T. (2008) J. Am. Chem. Soc., 130, 4431–4446.PubMedGoogle Scholar
  37. 37.
    Goedheer, J. C. (1955) Biochim. Biophys. Acta, 16, 471–476.PubMedGoogle Scholar
  38. 38.
    Goedheer, J. C. (1955) Nature, 176, 928–929.PubMedGoogle Scholar
  39. 39.
    Krasnovsky, A. A. (1960) Annu. Rev. Plant Physiol., 11, 363–410.Google Scholar
  40. 40.
    Krasnovsky, A. A. (1965) Photochem. Photobiol., 4, 641–655.Google Scholar
  41. 41.
    Krasnovsky, A. A., and Bystrova, M. I. (1980) Biosystems, 12, 181–194.PubMedGoogle Scholar
  42. 42.
    Krasnovsky, A. A., and Brin, G. P. (1948) Doklady AN SSSR, 63, 163–166.Google Scholar
  43. 43.
    Krasnovsky, A. A., and Kosobutskaya, L. M. (1953) Doklady AN SSSR, 91, 343–346.Google Scholar
  44. 44.
    Krasnovsky, A. A., Kosobutskaya, L. M., and Voinovskaya, K. K. (1953) Doklady AN SSSR, 92, 1201–1204.Google Scholar
  45. 45.
    Albers, V. M., and Knorr, H. V. (1937) Plant Physiol., 12, 833–843.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Brugger, J. E., and Franck, J. (1958) Arch. Biochem. Biophys., 75, 465–496.PubMedGoogle Scholar
  47. 47.
    Franck, J. (1958) Proc. Natl. Acad. Sci. USA, 44, 941–948.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Brody, S. S., and Brody, M. (1961) Biochim. Biophys. Acta, 54, 495–505.PubMedGoogle Scholar
  49. 49.
    Duysens, L. N. M. (1956) Annu. Rev. Plant Physiol. Plant Mol. Biol., 7, 25–50.Google Scholar
  50. 50.
    Wohl, K. (1937) Zeitschrift fur Physikalische Chemie-Abteilung B-Chemie der Elementarprozesse Aufbau der Materie, 37, 209–230.Google Scholar
  51. 51.
    Duysens, L. N. M. (1952) Transfer of Excitation Energy in Photosynthesis, Thesis, Utrecht, pp. 1–96.Google Scholar
  52. 52.
    Duysens, L. N. M., Huiskamp, W. J., Vos, J. J., and Vanderhart, J. M. (1956) Biochim. Biophys. Acta, 19, 188–190.PubMedGoogle Scholar
  53. 53.
    Franck, J., and Teller, E. (1938) J. Chem. Phys., 6, 861–872.Google Scholar
  54. 54.
    Brody, S. S., and Rabinowitch, E. (1957) Science, 125, 555–557.PubMedGoogle Scholar
  55. 55.
    Zankel, K. L., Reed, D. W., and Clayton, R. K. (1968) Proc. Natl. Acad. Sci. USA, 61, 1243–1249.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Reed, D. W., and Clayton, R. K. (1968) Biophys. J., 8,Suppl. 1, A150.Google Scholar
  57. 57.
    Reed, D. W., and Clayton, R. K. (1968) Biochem. Biophys. Res. Commun., 30, 471–475.PubMedGoogle Scholar
  58. 58.
    Martin, J. L., Breton, J., Hoff, A. J., Migus, A., and Antonetti, A. (1986) Proc. Natl. Acad. Sci. USA, 83, 957–961.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Shelaev, I. V., Gostev, F. E., Mamedov, M. D., Sarkisov, O. M., Nadtochenko, V. A., Shuvalov, V. A., and Semenov, A. Y. (2010) Biochim. Biophys. Acta — Bioenergetics, 1797, 1410–1420.Google Scholar
  60. 60.
    Spitzer, F. (1969) Principles of Random Walk [Russian translation], Mir, Moscow.Google Scholar
  61. 61.
    Zankel, K. L., and Clayton, R. K. (1968) Biophys. J., 8,Suppl. 1, A151.Google Scholar
  62. 62.
    Bergstrom, H., Westerhuis, W. H. J., Sundstrom, V., Vangrondelle, R., Niederman, R. A., and Gillbro, T. (1988) FEBS Lett., 233, 12–16.Google Scholar
  63. 63.
    Timpmann, K., Zhang, F. G., Freiberg, A., and Sundstrom, V. (1993) Biochim. Biophys. Acta, 1183, 185–193.Google Scholar
  64. 64.
    Nuijs, J. T. M., Aartsma, T. J., and Amesz, J. (1994) Biochim. Biophys. Acta, 1188, 278–286.Google Scholar
  65. 65.
    Valkunas, L., Razjivin, A., and Trinkunas, G. (1985) Photobiochem. Photobiophys., 9, 139–142.Google Scholar
  66. 66.
    Novoderezhkin, V. I., and Razjivin, A. P. (1995) Biophys. J., 68, 1089–1100.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Razjivin, A. P., Leupold, D., and Novoderezhkin, V. I. (1998) in Photosynthesis: Mechanisms and Effects, Vol. 1 (Garab, G., ed.) Kluwer Academic Publishers, Dorderecht, The Netherlands, pp. 15–20.Google Scholar
  68. 68.
    Agranovich, V. M. (2008) Excitations in Organic Solids, Oxford University Press Inc., New York.Google Scholar
  69. 69.
    Knox, R. S. (1963) Theory of Excitons, Academic Press, New-York-London.Google Scholar
  70. 70.
    Davydov, A. S. (1971) Theory of Molecular Excitons, Plenum Press, New York.Google Scholar
  71. 71.
    Novoderezhkin, V. I., and Razjivin, A. P. (1995) Photochem. Photobiol., 62, 1035–1040.Google Scholar
  72. 72.
    Roszak, A. W., Howard, T. D., Southall, J., Gardiner, A. T., Law, C. J., Isaacs, N. W., and Cogdell, R. J. (2003) Science, 302, 1969–1972.PubMedGoogle Scholar
  73. 73.
    Noy, D. (2008) Photosynth. Res., 95, 23–35.PubMedGoogle Scholar
  74. 74.
    Strumpfer, J., Sener, M., and Schulten, K. (2012) J. Phys. Chem. Lett., 3, 536–542.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Dorfman, K. E., Voronine, D. V., Mukamel, S., and Scully, M. O. (2013) Proc. Natl. Acad. Sci. USA, 110, 2746–2751.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Kominis, I. K. (2013) New J. Phys., 15, 075017.Google Scholar
  77. 77.
    Manzano, D. (2013) Plos One, 8, e57041.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Reimers, J. R., Cai, Z. L., Kobayashi, R., Ratsep, M., Freiberg, A., and Krausz, E. (2013) Sci. Rep., 3, 2761–2768.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Kohler, J., van Oijen, A. M., Ketelaars, M., Hofmann, C., Matsushita, M., Aartsma, T. J., and Schmidt, J. (2001) Int. J. Modern Phys. B, 15, 3633–3636.Google Scholar
  80. 80.
    Matsushita, M., Ketelaars, M., van Oijen, A. M., Kohler, J., Aartsma, T. J., and Schmidt, J. (2001) Biophys. J., 80, 1604–1614.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Ketelaars, M., van Oijen, A. M., Matsushita, M., Kohler, J., Schmidt, J., and Aartsma, T. J. (2001) Biophys. J., 80, 1591–1603.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Van Oijen, A. M., Ketelaars, M., Matsushita, M., Kohler, J., Aartsma, T. J., and Schmidt, J. (2001) Biophys. J., 80, 151A.Google Scholar
  83. 83.
    Engel, G. S., Calhoun, T. R., Read, E. L., Ahn, T. K., Mancal, T., Cheng, Y. C., Blankenship, R. E., and Fleming, G. R. (2007) Nature, 446, 782–786.PubMedGoogle Scholar
  84. 84.
    Collini, E., Wong, C. Y., Wilk, K. E., Curmi, P. M. G., Brumer, P., and Scholes, G. D. (2010) Nature, 463, 644–647.PubMedGoogle Scholar
  85. 85.
    Engel, G. S., Calhoun, T. R., Read, E. L., Ahn, T. K., Mancal, T., Cheng, Y. C., Blankenship, R. E., and Fleming, G. R. (2007) Nature, 446, 782–786.PubMedGoogle Scholar
  86. 86.
    Mukamel, S. (1995) Principles of Nonlinear Optical Spectroscopy, Oxford University Press.Google Scholar
  87. 87.
    Kuhn, O., Renger, T., May, V., Voigt, J., Pullerits, T., and Sundstrom, V. (1997) Trends Photochem. Photobiol., 4, 213–255.Google Scholar
  88. 88.
    Meier, T., Chernyak, V., and Mukamel, S. (1997) J. Chem. Phys., 107, 8759–8780.Google Scholar
  89. 89.
    Renger, T., and May, V. (1997) Phys. Rev. Lett., 78, 3406–3409.Google Scholar
  90. 90.
    Raszewski, G., Saenger, W., and Renger, T. (2005) Biophys. J., 88, 986–998.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Van Grondelle, R., and Novoderezhkin, V. I. (2006) Phys. Chem. Chem. Phys., 8, 793–807.PubMedGoogle Scholar
  92. 92.
    Novoderezhkin, V. I., Dekker, J. P., and van Grondelle, R. (2007) Biophys. J., 93, 1293–1311.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Yang, M. N., and Fleming, G. R. (2002) Chem. Phys., 275, 355–372.Google Scholar
  94. 94.
    Renger, T., May, V., and Kuhn, O. (2001) Phys. Rep. — Rev. Sec. Phys. Lett., 343, 138–254.Google Scholar
  95. 95.
    Mukamel, S., and Abramavicius, D. (2004) Chem. Rev., 104, 2073–2098.PubMedGoogle Scholar
  96. 96.
    Renger, T. (2009) Photosynth. Res., 102, 471–485.PubMedGoogle Scholar
  97. 97.
    Van Grondelle, R., and Novoderezhkin, V. I. (2010) Nature, 463, 614–615.PubMedGoogle Scholar
  98. 98.
    Brixner, T., Stenger, J., Vaswani, H. M., Cho, M., Blankenship, R. E., and Fleming, G. R. (2005) Nature, 434, 625–628.PubMedGoogle Scholar
  99. 99.
    Mancal, T., Pisliakov, A. V., and Fleming, G. R. (2006) J. Chem. Phys., 124, 234504.PubMedGoogle Scholar
  100. 100.
    Pisliakov, A. V., Mancal, T., and Fleming, G. R. (2006) J. Chem. Phys., 124, 234505.PubMedGoogle Scholar
  101. 101.
    Lewis, K. L. M., Fuller, F. D., Myers, J. A., Yocum, C. F., Mukamel, S., Abramavicius, D., and Ogilvie, J. P. (2013) J. Phys. Chem. A, 117, 34–41.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Nagamura, T., and Kamata, S. (1990) J. Photochem. Photobiol. A-Chem., 55, 187–196.Google Scholar
  103. 103.
    Madjet, M. E., Abdurahman, A., and Renger, T. (2006) J. Phys. Chem. B, 110, 17268–17281.PubMedGoogle Scholar
  104. 104.
    Renger, T., and Marcus, R. A. (2002) J. Chem. Phys., 116, 9997–10019.Google Scholar
  105. 105.
    Novoderezhkin, V. I., Yakovlev, A. G., van Grondelle, R., and Shuvalov, V. A. (2004) J. Phys. Chem. B, 108, 7445–7457.Google Scholar
  106. 106.
    Novoderezhkin, V. I., Andrizhiyevskaya, E. G., Dekker, J. P., and van Grondelle, R. (2005) Biophys. J., 89, 1464–1481.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Redfield, A. G. (1965) in Advances in Magnetic Resonance (Waugh, J. S., ed.) Academic Press, New York-London, pp. 1–32.Google Scholar
  108. 108.
    Zhang, W. M., Meier, T., Chernyak, V., and Mukamel, S. (1998) J. Chem. Phys., 108, 7763–7774.Google Scholar
  109. 109.
    Yang, M., Damjanovic, A., Vaswani, H. M., and Fleming, G. R. (2003) Biophys. J., 85, 140–158.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Novoderezhkin, V. I., and van Grondelle, R. (2010) Phys. Chem. Chem. Phys., 12, 7352–7365.PubMedGoogle Scholar
  111. 111.
    Pishchalnikov, R., Mueller, M., and Holzwarth, A. (2007) Photosynth. Res., 91, 141.Google Scholar
  112. 112.
    Ishizaki, A., and Fleming, G. R. (2009) Proc. Natl. Acad. Sci. USA, 106, 17255–17260.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Ishizaki, A., and Fleming, G. R. (2009) J. Chem. Phys., 130, 234110.PubMedGoogle Scholar
  114. 114.
    Storn, R., and Price, K. (1997) J. Global Optimization, 11, 341–359.Google Scholar
  115. 115.
    Storn, R. (1999) IEEE Trans. Evol. Comput., 3, 22–34.Google Scholar
  116. 116.
    Pishchalnikov, R. Y., Muller, M. G., and Holzwarth, A. R. (2008) in Photosynthesis. Energy from the Sun (Allen, J. F., Gantt, E., Golbeck, J. H., and Osmond, B., eds.) Springer, pp. 163–166.Google Scholar
  117. 117.
    Pershin, S. M., and Pishchalnikov, R. Y. (2012) Physics of Wave Phenomena, 20, 35–44.Google Scholar
  118. 118.
    Pishchalnikov, R. Y., Pershin, S. M., and Bunkin, A. F. (2012) Physics of Wave Phenomena, 20, 184–192.Google Scholar
  119. 119.
    Pishchalnikov, R. Y., Pershin, S. M., and Bunkin, A. F. (2012) Biophysics, 57, 779–785.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of Sciences, Wave Research CenterMoscowRussia

Personalised recommendations