Advertisement

Biochemistry (Moscow)

, Volume 79, Issue 3, pp 205–212 | Cite as

Interaction of molecular oxygen with the donor side of photosystem II after destruction of the water-oxidizing complex

  • D. V. YanykinEmail author
  • A. A. Khorobrykh
  • O. M. Zastrizhnaya
  • V. V. Klimov
Review

Abstract

Photosystem II (PSII) is a pigment-protein complex of thylakoid membrane of higher plants, algae, and cyanobacteria where light energy is used for oxidation of water and reduction of plastoquinone. Light-dependent reactions (generation of excited states of pigments, electron transfer, water oxidation) taking place in PSII can lead to the formation of reactive oxygen species. In this review attention is focused on the problem of interaction of molecular oxygen with the donor site of PSII, where after the removal of manganese from the water-oxidizing complex illumination induces formation of long-lived states (P680 and TyrZ·) capable of oxidizing surrounding organic molecules to form radicals.

Key words

photosystem II reactive oxygen species manganese hydroperoxides 

Abbreviations

apo-WOC-PSII

PSII membrane fragments deprived of the WOC

Chl

chlorophyll

D1

PSII reaction center polypeptide

DCBQ

2,6-dichloro-1,4-benzoquinone

DPC

diphenylcarbazide

E0

standard oxidation-reduction potential

ETC

electron transport chain

ΔF

photoinduced changes of chlorophyll fluorescence yield related to the photoreduction of the primary quinone acceptor QA

HO·

hydroxyl radical

H2O2

hydrogen peroxide

HP-OOH

hydrophilic hydroperoxides

LP-OOH

lipophilic hydroperoxides

MCPBA

m-chloroperbenzoic acid

Mn4CaO5 cluster

the catalytic inorganic core of the PSII WOC

(Mn3+)2(di-μ-oxo)-complex

an intermediate both in the photoassembly and disassembly of the WOC

1O2

singlet oxygen

O2·−

superoxide anion radical

P680

primary electron donor of PSII

Pheo

pheophytin, the primary electron acceptor of PSII

PSII

photosystem II

RC

reaction center

ROOH

organic peroxides

ROS

reactive oxygen species

SOD

superoxide dismutases

Spy-HP

2-(4-diphenylphos-phanylphenyl)-9-(1-hexylheptyl)anthra[2,1,9-def,6,5,10-d′e′f′]diisoquinoline-1,3,8,10-tetraone

TBHP

tert-butylhydroperoxide

TyrZ

redox active tyrosine residue of D1 protein

WOC

water-oxidizing complex

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nat. Struct. Mol. Biol., 16, 334–342.PubMedCrossRefGoogle Scholar
  2. 2.
    Umena, Y., Kawakami, K., Shen, J.-R., and Kamiya, N. (2011) Nature, 473, 55–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Klimov, V. V., Allakhverdiev, S. I., Demeter, S., and Krasnovsky, A. A. (1979) Dokl. AN SSSR, 249, 227–230.Google Scholar
  4. 4.
    Rappaport, F., Guergova-Kuras, M., Nixon, P. J., Diner, B. A., and Lavergne, J. (2002) Biochemistry, 41, 8518–8527.PubMedCrossRefGoogle Scholar
  5. 5.
    Ishikita, H., Loll, B., Biesiadka, J., Saenger, W., and Knapp, E.-W. (2005) Biochemistry, 44, 4118–4124.PubMedCrossRefGoogle Scholar
  6. 6.
    Allakhverdiev, S. I., Tomo, T., Shimada, Y., Kindo, H., Nagao, R., Klimov, V. V., and Mimuro, M. (2010) Proc. Natl. Acad. Sci. USA, 107, 3924–3929.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Allakhverdiev, S. I., Tsuchiya, T., Watabe, K., Kojima, A., Los, D. A., Tomo, T., Klimov, V. V., and Mimuro, M. (2011) Proc. Natl. Acad. Sci. USA, 108, 8054–8058.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Klimov, V. V., Klevanik, A. V., Shuvalov, V. A., and Krasnovsky, A. A. (1977) FEBS Lett., 82, 183–186.PubMedCrossRefGoogle Scholar
  9. 9.
    Klevanik, A. V., Klimov, V. V., Shuvalov, V. A., and Krasnovsky, A. A. (1977) Biofizika, 236, 241–244.Google Scholar
  10. 10.
    Klimov, V. V., and Krasnovsky, A. A. (1981) Photosynthetica, 15, 592–609.Google Scholar
  11. 11.
    Klimov, V. V. (2005) in Discoveries in Photosynthesis (Govindjee, Beatty, J. T., Gest, H., and Allen, J. F., eds.) Springer, pp. 275–281.Google Scholar
  12. 12.
    Klimov, V. V., Allakhverdiev, S. I., and Pashchenko, V. Z. (1978) Dokl. AN SSSR, 242, 1204–1207.Google Scholar
  13. 13.
    Shuvalov, V. A., Klimov, V. V., Dolan, E., Parson, W. W., and Ke, B. (1980) FEBS Lett., 118, 279–282.CrossRefGoogle Scholar
  14. 14.
    Pospisil, P. (2009) Biochim. Biophys. Acta, 1787, 1151–1160.PubMedCrossRefGoogle Scholar
  15. 15.
    Ananyev, G. M., Renger, G., Wacker, U., and Klimov, V. (1994) Photosynth. Res., 41, 327–338.PubMedCrossRefGoogle Scholar
  16. 16.
    Bekina, R. M., Lebedeva, A. F., and Shuvalov, V. A. (1976) Dokl. AN SSSR, 231, 739–742.Google Scholar
  17. 17.
    Ananyev, G., Wydrzynski, T., Renger, G., and Klimov, V. (1992) Biochim. Biophys. Acta, 1100, 303–311.CrossRefGoogle Scholar
  18. 18.
    Khorobrykh, S. A., and Ivanov, B. N. (2002) Photosynth. Res., 71, 209–219.PubMedCrossRefGoogle Scholar
  19. 19.
    Khorobrykh, S. A., Mubarakshina, M. M., and Ivanov, B. N. (2004) Biochim. Biophys. Acta, 1657, 164–167.PubMedCrossRefGoogle Scholar
  20. 20.
    Mubarakshina, M. M., and Ivanov, B. N. (2010) Physiol. Plant., 140, 103–110.PubMedCrossRefGoogle Scholar
  21. 21.
    Kruk, J., and Strzalka, K. (1999) Photosynth. Res., 62, 273–279.CrossRefGoogle Scholar
  22. 22.
    Pospisil, P., Snyrychova, I., Kruk, J., Strzalka, K., and Naus, J. (2006) Biochem. J., 397, 321–327.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ananyev, G. M., and Klimov, V. V. (1988) Dokl. AN SSSR, 298, 1007–1011.Google Scholar
  24. 24.
    Krasnovsky, A. A. (1982) Photochem. Photobiol., 36, 733–741.CrossRefGoogle Scholar
  25. 25.
    Pospisil, P. (2012) Biochim. Biophys. Acta, 1817, 218–231.PubMedCrossRefGoogle Scholar
  26. 26.
    Ananyev, G. M., and Klimov, V. V. (1989) Biokhimiya, 54, 1587–1597.Google Scholar
  27. 27.
    Klimov, V., Ananyev, G., Zastrizhnaya, O., Wydrzynski, T., and Renger, G. (1993) Photosynth. Res., 38, 409–416.PubMedCrossRefGoogle Scholar
  28. 28.
    Jegerschoeld, C., Virgin, I., and Styring, S. (1990) Biochemistry, 29, 6179–6186.CrossRefGoogle Scholar
  29. 29.
    Hanley, J., Deligiannakis, Y., Pascal, A., Faller, P., and Rutherford, A. W. (1999) Biochemistry, 38, 8189–8195.PubMedCrossRefGoogle Scholar
  30. 30.
    Tracewell, C. A., Vrettos, J. S., Bautista, J. A., Frank, H. A., and Brudvig, G. W. (2001) Arch. Biochem. Biophys., 385, 61–69.PubMedCrossRefGoogle Scholar
  31. 31.
    Telfer, A., Frolov, D., Barber, J., Robert, B., and Pascal, A. (2003) Biochemistry, 42, 1008–1015.PubMedCrossRefGoogle Scholar
  32. 32.
    Telfer, A., Barber, J., and Evans, M. (1988) FEBS Lett., 232, 209–213.CrossRefGoogle Scholar
  33. 33.
    Klimov, V. V., Shafiev, M. A., and Allakhverdiev, S. I. (1990) Photosynth. Res., 23, 59–65.PubMedCrossRefGoogle Scholar
  34. 34.
    Khorobrykh, S. A., Khorobrykh, A. A., Klimov, V. V., and Ivanov, B. N. (2002) Biochemistry (Moscow), 67, 683–688.CrossRefGoogle Scholar
  35. 35.
    Yanykin, D. V., Khorobrykh, A. A., Khorobrykh, S. A., and Klimov, V. V. (2010) Biochim. Biophys. Acta, 1797, 516–523.PubMedCrossRefGoogle Scholar
  36. 36.
    Yanykin, D. V., Khorobrykh, A. A., Khorobrykh, S. A., Pshybytko, N. L., and Klimov, V. V. (2013) Photosynth. Res., 117, 367–374.PubMedCrossRefGoogle Scholar
  37. 37.
    Khorobrykh, S. A., Khorobrykh, A. A., Yanykin, D. V., Ivanov, B. N., Klimov, V. V., and Mano, J. (2011) Biochemistry, 50, 10658–10665.PubMedCrossRefGoogle Scholar
  38. 38.
    Joliot, P., Barbieri, G., and Chabaud, R. (1969) Photochem. Photobiol., 10, 309–329.CrossRefGoogle Scholar
  39. 39.
    Joliot, P., Joliot, A., Bouges, B., and Barbieri, G. (1971) Photochem. Photobiol., 14, 287–305.CrossRefGoogle Scholar
  40. 40.
    Cheniae, G. M., and Martin, I. F. (1971) Biochim. Biophys. Acta, 253, 167–181.PubMedCrossRefGoogle Scholar
  41. 41.
    Tamura, N., and Cheniae, G. (1987) Biochim. Biophys. Acta, 890, 179–194.CrossRefGoogle Scholar
  42. 42.
    Ananyev, G. M., and Klimov, V. V. (1988) Dokl. AN SSSR, 298, 1007–1011.Google Scholar
  43. 43.
    Ananyev, G. M., and Dismukes, G. C. (1996) Biochemistry, 35, 4102–4109.PubMedCrossRefGoogle Scholar
  44. 44.
    Hwang, H. J., McLain, A., Debus, R. J., and Burnap, R. L. (2007) Biochemistry, 46, 13648–13657.PubMedCrossRefGoogle Scholar
  45. 45.
    Klimov, V. V., Allakhverdiev, S. I., Shuvalov, V. A., and Krasnovsky, A. A. (1982) FEBS Lett., 148, 307–312.PubMedCrossRefGoogle Scholar
  46. 46.
    Hawkins, C. L., and Davies, M. J. (2001) Biochim. Biophys. Acta, 1504, 196–219.PubMedCrossRefGoogle Scholar
  47. 47.
    Denisov, E. T., and Afanas’ev, I. B. (2005) Taylor & Francis Group CRC, Press is an imprint of Taylor & Francis Group.Google Scholar
  48. 48.
    Dobos, D. (1975) Electrochemical Data: a Handbook for Electrochemists in Industry and Universities, Elsevier, NY, p. 339.Google Scholar
  49. 49.
    Baranov, S. V., Tyryshkin, A. M., Katz, D., Dismukes, G. C., Ananyev, G. M., and Klimov, V. V. (2004) Biochemistry, 43, 2070–2079.PubMedCrossRefGoogle Scholar
  50. 50.
    Soh, N., Ariyoshi, T., Fukaminato, T., Nakano, K., Irie, M., and Imato, T. (2006) Bioorg. Med. Chem. Lett., 16, 2943–2946.PubMedCrossRefGoogle Scholar
  51. 51.
    Yamauchi, Y., and Sugimoto, Y. (2010) Planta, 231, 1077–1088.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. V. Yanykin
    • 1
    Email author
  • A. A. Khorobrykh
    • 1
  • O. M. Zastrizhnaya
    • 1
  • V. V. Klimov
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations