Biochemistry (Moscow)

, Volume 79, Issue 2, pp 77–87 | Cite as

Expression of exogenous DNA methyltransferases: Application in molecular and cell biology

  • O. V. Dyachenko
  • S. V. Tarlachkov
  • D. V. Marinitch
  • T. V. Shevchuk
  • Y. I. BuryanovEmail author


DNA methyltransferases might be used as powerful tools for studies in molecular and cell biology due to their ability to recognize and modify nitrogen bases in specific sequences of the genome. Methylation of the eukaryotic genome using exogenous DNA methyltransferases appears to be a promising approach for studies on chromatin structure. Currently, the development of new methods for targeted methylation of specific genetic loci using DNA methyltransferases fused with DNA-binding proteins is especially interesting. In the present review, expression of exogenous DNA methyltransferase for purposes of in vivo analysis of the functional chromatin structure along with investigation of the functional role of DNA methylation in cell processes are discussed, as well as future prospects for application of DNA methyltransferases in epigenetic therapy and in plant selection.

Key words

DNA methyltransferases targeted DNA methylation chromatin structure functions of DNA methylation 



DNA methyltransferase








polymerase chain reaction

H is A

T or C

W is

A or T


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Noyer-Weidner, M., and Trautner, T. A. (1993) EXS, 64, 39–108.PubMedGoogle Scholar
  2. 2.
    Rein, T., Kobayashi, T., Malott, M., Leffak, M., and DePamphilis, M. L. (1999) J. Biol. Chem., 274, 25792–25800.PubMedCrossRefGoogle Scholar
  3. 3.
    Modrich, P. (1987) Annu. Rev. Biochem., 56, 435–466.PubMedCrossRefGoogle Scholar
  4. 4.
    Ichida, H., Yoneyama, K., Koba, T., and Abe, T. (2009) Biochem. Biophys. Res. Commun., 389, 301–304.PubMedCrossRefGoogle Scholar
  5. 5.
    Low, D. A., Weyand, N. J., and Mahan, M. J. (2001) Infect. Immun., 69, 7197–7204.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Yoder, J. A., Walsh, C. P., and Bestor, T. H. (1997) Trends Genet., 13, 335–340.PubMedCrossRefGoogle Scholar
  7. 7.
    Okano, M., Bell, D. W., Haber, D. A., and Li, E. (1999) Cell, 99, 247–257.PubMedCrossRefGoogle Scholar
  8. 8.
    Finnegan, E. J., Genger, R. K., Peacock, W. J., and Dennis, E. S. (1998) Annu. Rev. Plant Phys. Plant Mol. Biol., 49, 223–247.CrossRefGoogle Scholar
  9. 9.
    Buryanov, Y., and Shevchuk, T. (2005) Anal. Biochem., 338, 1–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Proffitt, J. H., Davie, J. R., Swinton, D., and Hattman, S. (1984) Mol. Cell. Biol., 4, 985–988.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Hattman, S., Kenny, C., Berger, L., and Pratt, K. (1978) J. Bacteriol., 135, 1156–1157.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Feher, Z., Kiss, A., and Venetianer, P. (1983) Nature, 302, 266–268.PubMedCrossRefGoogle Scholar
  13. 13.
    Brooks, J. E., Blumenthal, R. M., and Gingeras, T. R. (1983) Nucleic Acids Res., 11, 837–851.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hoekstra, M. F., and Malone, R. E. (1985) Mol. Cell. Biol., 5, 610–618.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Hoekstra, M. F., and Malone, R. E. (1986) Mol. Cell. Biol., 6, 3555–3558.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Gunthert, U., and Reiners, L. (1987) Nucleic Acids Res., 15, 3689–3702.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Feher, Z., Schlagman, S. L., Miner, Z., and Hattman, S. (1988) Gene, 74, 193–195.PubMedCrossRefGoogle Scholar
  18. 18.
    Singh, J., and Klar, A. J. (1992) Genes Dev., 6, 186–196.PubMedCrossRefGoogle Scholar
  19. 19.
    Wright, J. H., Gottschling, D. E., and Zakian, V. A. (1992) Genes Dev., 6, 197–210.PubMedCrossRefGoogle Scholar
  20. 20.
    Gottschling, D. E. (1992) Proc. Natl. Acad. Sci. USA, 89, 4062–4065.PubMedCrossRefGoogle Scholar
  21. 21.
    Fisher-Adams, G., and Grunstein, M. (1995) EMBO J., 14, 1468–1477.PubMedGoogle Scholar
  22. 22.
    Boivin, A., and Dura, J. M. (1998) Genetics, 150, 1539–1549.PubMedGoogle Scholar
  23. 23.
    Kir’ianov, G. I., Smirnova, T. A., Isaeva, L. V., Vaniushin, B. F., and Bur’ianov, Ia. I. (1981) Biokhimiya, 46, 1887–1895.Google Scholar
  24. 24.
    Bulanenkova, S., Snezhkov, E., Nikolaev, L., and Sverdlov, E. (2007) Genetika, 130, 83–92.Google Scholar
  25. 25.
    Bulanenkova, S. S., Kozlova, A. A., Kotova, E. S., Snezhkov, E. V., Azhikina, T. L., Akopov, S. B., Nikolaev, L. G., and Sverdlov, E. D. (2011) Epigenetics, 6, 1078–1084.PubMedCrossRefGoogle Scholar
  26. 26.
    Kladde, M. P., Xu, M., and Simpson, R. T. (1996) EMBO J., 15, 6290–6300.PubMedGoogle Scholar
  27. 27.
    Xu, M., Simpson, R. T., and Kladde, M. P. (1998) Mol. Cell. Biol., 18, 1201–1212.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Kladde, M. P., and Simpson, R. T. (1996) in Chromatin Structure Mapping in vivo Using Methyltransferases, Vol. 274, Academic Press, N. Y., pp. 214–235.Google Scholar
  29. 29.
    Seeber, S., Kessler, C., and Gotz, F. (1990) Gene, 94, 37–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Pavletich, N. P., and Pabo, C. O. (1991) Science, 252, 809–817.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim, Y. G., Cha, J., and Chandrasegaran, S. (1996) Proc. Natl. Acad. Sci. USA, 93, 1156–1160.PubMedCrossRefGoogle Scholar
  32. 32.
    Bushman, F. D., and Miller, M. D. (1997) J. Virol., 71, 458–464.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Choo, Y., Sanchez-Garcia, I., and Klug, A. (1994) Nature, 372, 642–645.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim, J. S., Kim, J., Cepek, K. L., Sharp, P. A., and Pabo, C. O. (1997) Proc. Natl. Acad. Sci. USA, 94, 3616–3620.PubMedCrossRefGoogle Scholar
  35. 35.
    Xu, G. L., and Bestor, T. H. (1997) Nat. Genet., 17, 376–378.PubMedCrossRefGoogle Scholar
  36. 36.
    Matsuo, K., Silke, J., Gramatikoff, K., and Schaffner, W. (1994) Nucleic Acids Res., 22, 5354–5359.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Renbaum, P., and Razin, A. (1992) FEBS Lett., 313, 243–247.PubMedCrossRefGoogle Scholar
  38. 38.
    McNamara, A. R., Hurd, P. J., Smith, A. E., and Ford, K. G. (2002) Nucleic Acids Res., 30, 3818–3830.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    McNamara, A. R., and Ford, K. G. (2000) Nucleic Acids Res., 28, 4865–4872.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., and Gregory, P. D. (2010) Nat. Rev. Genet., 11, 636–646.PubMedCrossRefGoogle Scholar
  41. 41.
    Wines, D. R., Talbert, P. B., Clark, D. V., and Henikoff, S. (1996) Chromosoma, 104, 332–340.PubMedCrossRefGoogle Scholar
  42. 42.
    Lyko, F., Ramsahoye, B. H., Kashevsky, H., Tudor, M., Mastrangelo, M. A., Orr-Weaver, T. L., and Jaenisch, R. (1999) Nat. Genet., 23, 363–366.PubMedCrossRefGoogle Scholar
  43. 43.
    Kwoh, T. J., Kwoh, D. Y., McCue, A. W., Davis, G. R., Patrick, D., and Gingeras, T. R. (1986) Proc. Natl. Acad. Sci. USA, 83, 7713–7717.PubMedCrossRefGoogle Scholar
  44. 44.
    Frederick, C. A., Quigley, G. J., van der Marel, G. A., van Boom, J. H., Wang, A. H., and Rich, A. (1988) J. Biol. Chem., 263, 17872–17879.PubMedGoogle Scholar
  45. 45.
    Van Steensen, B., and Henikoff, S. (2000) Nat. Biotechnol., 18, 424–428.CrossRefGoogle Scholar
  46. 46.
    Lie, Y. S., and Petropoulos, C. J. (1998) Curr. Opin. Biotechnol., 9, 43–48.PubMedCrossRefGoogle Scholar
  47. 47.
    Lebrun, E., Fourel, G., Defossez, P. A., and Gilson, E. (2003) Mol. Cell. Biol., 23, 1498–1508.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Carvin, C. D., Dhasarathy, A., Friesenhahn, L. B., Jessen, W. J., and Kladde, M. P. (2003) Proc. Natl. Acad. Sci. USA, 100, 7743–7748.PubMedCrossRefGoogle Scholar
  49. 49.
    Xu, M., Kladde, M. P., Van Etten, J. L., and Simpson, R. T. (1998) Nucleic Acids Res., 26, 3961–3966.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Oshima, Y., Ogawa, N., and Harashima, S. (1996) Gene, 179, 171–177.PubMedCrossRefGoogle Scholar
  51. 51.
    Dyachenko, O. V., Shevchuk, T. V., and Buryanov, Y. I. (2010) Mol. Biol., 44, 195–210.CrossRefGoogle Scholar
  52. 52.
    Gold, M., and Hurwitz, J. (1964) J. Biol. Chem., 239, 3858–3865.PubMedGoogle Scholar
  53. 53.
    McClelland, M., Nelson, M., and Raschke, E. (1994) Nucleic Acids Res., 22, 3640–3659.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Nelson, M., Raschke, E., and McClelland, M. (1993) Nucleic Acids Res., 21, 3139–3154.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Wu, J., Issa, J. P., Herman, J., Bassett, D. E., Jr., Nelkin, B. D., and Baylin, S. B. (1993) Proc. Natl. Acad. Sci. USA, 90, 8891–8895.PubMedCrossRefGoogle Scholar
  56. 56.
    Sinsheimer, R. L. (1954) J. Biol. Chem., 208, 445–459.PubMedGoogle Scholar
  57. 57.
    Bird, A. P. (1980) Nucleic Acids Res., 8, 1499–1504.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Bestor, Y., Laudano, A., Mattaiano, R., and Ingram, V. (1988) J. Mol. Biol., 203, 971–983.PubMedCrossRefGoogle Scholar
  59. 59.
    Wu, J., Herman, J. G., Wilson, G., Lee, R. Y., Yen, R. W., Mabry, M., de Bustros, A., Nelkin, B. D., and Baylin, S. B. (1996) Cancer Res., 56, 616–622.PubMedGoogle Scholar
  60. 60.
    Kirnos, M. D., Aleksandrushkina, N. I., and Vanyushin, B. F. (1981) Biokhimiya, 46, 1458–1474.Google Scholar
  61. 61.
    Gruenbaum, Y., Naveh-Many, T., Cedar, H., and Razin, A. (1981) Nature, 292, 860–862.PubMedCrossRefGoogle Scholar
  62. 62.
    Cao, X., and Jacobsen, S. E. (2002) Proc. Natl. Acad. Sci. USA, 99, 16298–16491.CrossRefGoogle Scholar
  63. 63.
    Baylin, S. B., Fearon, E. R., Volgelstein, B., de Bustros, A., Sharkis, S. J., Burke, P. J., Staal, S. P., and Nelkin, B. D. (1987) Blood, 70, 412–517.PubMedGoogle Scholar
  64. 64.
    Baylin, S. B., Hoppener, J. W. M., de Bustros, A., Steenbergh, P. H., Lips, C. J. M., and Nelkin, B. D. (1986) Cancer Res., 46, 2917–2922.PubMedGoogle Scholar
  65. 65.
    Doerfler, W. (1993) in DNA Methylation: Molecular Biology and Biological Significance (Jost, J. P., and Saluz, H. P., eds.) Birkhauser Verlag, Basel-Boston-Berlin, pp. 262–299.Google Scholar
  66. 66.
    Schmitt, F., Oakeley, E. J., and Jost, J. P. (1997) J. Biol. Chem., 272, 1534–1540.PubMedCrossRefGoogle Scholar
  67. 67.
    Marinitch, D. V., Vorob’ev, I. A., Holms, J., Zakharchenko, N. S., Dyachenko, O. V., Buryanov, Y. I., and Shevchuk, T. V. (2004) Biochemistry (Moscow), 69, 340–349.CrossRefGoogle Scholar
  68. 68.
    Malone, C. S., Miner, M. D., Doerr, J. R., Jackson, J. P., Jacobsen, S. E., Wall, R., and Teitell, M. (2001) Proc. Natl. Acad. Sci. USA, 98, 10404–10409.PubMedCrossRefGoogle Scholar
  69. 69.
    Lorincz, M. C., Schubeler, D., Goeke, S. C., Walters, M., Groudine, M., and Martin, D. I. (2000) Mol. Cell Biol., 20, 842–850.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Franchina, M., and Kay, P. H. (2000) DNA Cell Biol., 19, 521–526.PubMedCrossRefGoogle Scholar
  71. 71.
    Shevchuk, T., Kretzner, L., Munson, K., Axume, J., Clark, J., Dyachenko, O., Caudill, M., Buryanov, Ya., and Smith, S. (2005) Nucleic Acids Res., 33, 6124–6136.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., Nery, J. R., Lee, L., Ye, Z., Ngo, Q. M., Edsall, L., Antosiewicz-Bourget, J., Stewart, R., Ruotti, V., Millar, A. H., Thomson, J. A., Ren, B., and Ecker, J. R. (2009) Nature, 462, 315–322.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Buryanov, Ya. I., Zacharchenko, N. S., Shevchuk, T. V., and Bogdarina, I. G. (1995) Gene, 157, 283–287.PubMedCrossRefGoogle Scholar
  74. 74.
    Van Blokland, R., Ross, S., Corrado, G., Scolland, C., and Meyer, P. (1998) Plant J., 15, 543–551.PubMedCrossRefGoogle Scholar
  75. 75.
    Mitra, A., and Que, Q. (1994) Biochim. Biophys. Acta, 1219, 244–249.PubMedCrossRefGoogle Scholar
  76. 76.
    Kakutani, T., Jeddeloh, J. A., Flowers, S. K., Munakata, K., and Richards, E. J. (1996) Proc. Natl. Acad. Sci. USA, 93, 12406–12411.PubMedCrossRefGoogle Scholar
  77. 77.
    Finnegan, E. J., Peacock, W. J., and Dennis, E. S. (1996) Proc. Natl. Acad. Sci. USA, 93, 8449–8454.PubMedCrossRefGoogle Scholar
  78. 78.
    Buryanov, Y. I., and Shevchuk, T. V. (1999) Bioorg. Khim., 25, 630–633.Google Scholar
  79. 79.
    Gingeras, T. R., and Brooks, J. E. (1983) Proc. Natl. Acad. Sci. USA, 80, 402–406.PubMedCrossRefGoogle Scholar
  80. 80.
    Nakai, H., Storm, T. A., and Kay, M. A. (2000) J. Virol., 74, 9451–9463.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Vanyushin, B. F., Kadyrova, D. Kh., Karimov, Kh. Kh., and Belozersky, A. N. (1971) Biokhimiya, 36, 1251–1258.Google Scholar
  82. 82.
    Buryanov, Y. I., Eroshina, N. V., Vagabova, L. M., and Il’in, A. V. (1972) Dokl. Akad. Nauk SSSR, 206, 992–994.Google Scholar
  83. 83.
    Ngernprasirtsiri, J., and Akazawa, T. (1990) Eur. J. Biochem., 194, 513–520.PubMedCrossRefGoogle Scholar
  84. 84.
    Pinter-Toro, J. A. (1987) Biochem. Biophys. Res. Commun., 147, 1082–1087.CrossRefGoogle Scholar
  85. 85.
    Vanyushin, B. F. (2005) Mol. Biol., 39, 557–566.CrossRefGoogle Scholar
  86. 86.
    Vanyushin, B. F., Alexandrushkina, N. I., and Kirnos, M. D. (1988) FEBS Lett., 233, 397–399.CrossRefGoogle Scholar
  87. 87.
    Kirnos, M. D., Alexandrushkina, N. I., Goremykin, V. V., Kudryashova, I. B., and Vanyushin, B. F. (1992) Biokhimiya, 57, 1566–1573.Google Scholar
  88. 88.
    Bakeeva, L. E., Kirnos, M. D., Alexandrushkina, N. I., Kazimirchyuk, S. B., Shorning, B. Yu., Zamyatnina, V. A., Yaguzhinsky, L. S., and Vanyushin, B. F. (1999) FEBS Lett., 457, 122–125.PubMedCrossRefGoogle Scholar
  89. 89.
    Fedoreeva, L. I., and Vanyushin, B. F. (2002) FEBS Lett., 514, 305–308.CrossRefGoogle Scholar
  90. 90.
    Torres, J. T., Block, A., Hahlbrock, K., and Somssich, I. E. (1993) Plant J., 4, 587–592.CrossRefGoogle Scholar
  91. 91.
    Rogers, J. C., and Rogers, S. W. (1995) Plant J., 7, 221–223.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • O. V. Dyachenko
    • 1
  • S. V. Tarlachkov
    • 1
    • 2
  • D. V. Marinitch
    • 3
  • T. V. Shevchuk
    • 1
  • Y. I. Buryanov
    • 1
    Email author
  1. 1.Branch of Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Pushchino State Institute of Natural SciencesPushchino, Moscow RegionRussia
  3. 3.Republican Research and Production Center of Transfusiology and Medical BiotechnologiesMinskRepublic of Belarus

Personalised recommendations