Biochemistry (Moscow)

, Volume 79, Issue 1, pp 44–53 | Cite as

Effect of potential-dependent potassium uptake on production of reactive oxygen species in rat brain mitochondria

  • O. V. AkopovaEmail author
  • L. I. Kolchinskaya
  • V. I. Nosar
  • V. A. Bouryi
  • I. N. Mankovska
  • V. F. Sagach


The effect of potential-dependent potassium uptake on reactive oxygen species (ROS) generation in mitochondria of rat brain was studied. It was found that the effect of K+ uptake on ROS production in the brain mitochondria under steady-state conditions (state 4) was determined by potassium-dependent changes in the membrane potential of the mitochondria (ΔΨm). At K+ concentrations within the range of 0–120 mM, an increase in the initial rate of K+-uptake into the matrix resulted in a decrease in the steady-state rate of ROS generation due to the K+-induced depolarization of the mitochondrial membrane. The selective blockage of the ATP-dependent potassium channel (K ATP + -channel) by glibenclamide and 5-hydroxydecanoate resulted in an increase in ROS production due to the membrane repolarization caused by partial inhibition of the potential-dependent K+ uptake. The ATP-dependent transport of K+ was shown to be ∼40% of the potential-dependent K+ uptake in the brain mitochondria. Based on the findings of the experiments, the potential-dependent transport of K+ was concluded to be a physiologically important regulator of ROS generation in the brain mitochondria and that the functional activity of the native K ATP + -channel in these organelles under physiological conditions can be an effective tool for preventing ROS overproduction in brain neurons.

Key words

potassium brain mitochondria reactive oxygen species KATP+-channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murphy, M. P. (2009) Biochem. J., 417, 1–13.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Han, D., Williams, E., and Cadenas, E. (2001) Biochem. J., 353, 411–416.PubMedCrossRefGoogle Scholar
  3. 3.
    Andreyev, A. Y., Kushnareva, Y. E., and Starkov, A. A. (2005) Biochemistry (Moscow), 70, 200–214.CrossRefGoogle Scholar
  4. 4.
    Zorov, D. B., Juhaszova, M., and Sollott, S. (2006) Biochim. Biophys. Acta, 1757, 509–517.PubMedCrossRefGoogle Scholar
  5. 5.
    Kroemer, G., Galluzzi, L., and Brenner, C. (2007) Physiol. Rev., 87, 99–163.PubMedCrossRefGoogle Scholar
  6. 6.
    Skulachev, V. P. (1999) Mol. Aspects Med., 20, 139–184.PubMedCrossRefGoogle Scholar
  7. 7.
    Grivennikova, V. G., and Vinogradov, A. D. (2006) Biochim. Biophys. Acta, 1757, 553–561.PubMedCrossRefGoogle Scholar
  8. 8.
    Kushnareva, Y., Murphy, A. N., and Andreyev, A. (2002) Biochem. J., 368, 545–553.PubMedCrossRefGoogle Scholar
  9. 9.
    Genova, M. L., Ventura, B., Giuliano, G., Bovina, C., Formiggiani, G., Parenti, C. G., and Lenaz, G. (2001) FEBS Lett., 505, 364–368.PubMedCrossRefGoogle Scholar
  10. 10.
    Lambert, A. J., and Brand, M. D. (2004) J. Biol. Chem., 279, 39414–39420.PubMedCrossRefGoogle Scholar
  11. 11.
    Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) FEBS Lett., 416, 15–18.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu, Sh.-S. (1999) J. Bioenerg. Biomembr., 31, 367–376.PubMedCrossRefGoogle Scholar
  13. 13.
    Turrens, J. F., Alexandre, A., and Lehninger, A. L. (1985) Arch. Biochem. Biophys., 237, 408–414.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen, Q., Vazquez, E. J., Moghaddas, S., Hoppel, C. L., and Lesnefsky, E. J. (2003) J. Biol. Chem., 278, 36027–36031.PubMedCrossRefGoogle Scholar
  15. 15.
    Malinska, D., Mirandola, S. R., and Kunz, W. S. (2010) FEBS Lett., 584, 2043–2048.PubMedCrossRefGoogle Scholar
  16. 16.
    Mironova, G. D., Kachaeva, E. V., and Kopylov, A. T. (2007) Vestnik Ros. Akad. Med. Nauk, 2, 34–43.Google Scholar
  17. 17.
    Busija, D. W., Lacza, Zs., Rajapakse, N., Shimizu, K., Kis, B., Bari, F., Domoki, F., and Horiguchi, T. (2004) Brain Res. Rev., 46, 282–294.PubMedCrossRefGoogle Scholar
  18. 18.
    O’Rourke, B. (2004) Circ. Res., 94, 420–432.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Szewczyk, A., Jarmuszkiewicz, W., and Kunz, W. (2009) IUBMB Life, 61, 134–143.PubMedCrossRefGoogle Scholar
  20. 20.
    Garlid, K. D., and Paucek, P. (2003) Biochim. Biophys. Acta, 1606, 23–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Brand, M. D., Affourtit, Ch., Esteves, T., Green, K., Lambert, A. J., Miwa, S., Pakay, J. L., and Parker, N. (2004) Free Radical Biol. Med., 37, 755–767.CrossRefGoogle Scholar
  22. 22.
    Facundo, H. T. F., dePaula, J. G., and Kowaltowski, A. J. (2005) J. Bioenerg. Biomembr., 37, 75–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Ferranti, R. F., da Silva, M. M., and Kowaltowski, A. J. (2003) FEBS Lett., 536, 51–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Andrukhiv, A., Costa, A. D., West, I. C., and Garlid, K. D. (2006) Am. J. Physiol., 291, H2067–H2074.Google Scholar
  25. 25.
    Costa, A. D. T., and Garlid, K. D. (2008) Am. J. Physiol., 295, H874–H882.Google Scholar
  26. 26.
    Jung, D. W., Davis, M. H., and Brierley, G. P. (1989) Anal. Biochem., 178, 348–354.PubMedCrossRefGoogle Scholar
  27. 27.
    Moore, C. L. (1971) Curr. Top. Bioenerg., 4, 191–236.Google Scholar
  28. 28.
    Akopova, O. V., Kolchinskaya, L. I., Nosar, V. I., Bouryi, V. A., Mankovska, I. N., and Sagach, V. F. (2013) Biochemistry (Moscow), 78, 80–90.CrossRefGoogle Scholar
  29. 29.
    Feissner, R. F., Skalska, J., Gaum, W. E., and Sheu, Sh.-Sh. (2009) Front. Biosci., 14, 1197–1218.CrossRefGoogle Scholar
  30. 30.
    Akopova, O. V., Kolchinskaya, L. I., Nosar, V. I., Smirnov, A. N., Malysheva, M. K., Mankovska, I. N., and Sagach, V. F. (2011) Ukr. Biokhim. Zh., 83, 46–55.PubMedGoogle Scholar
  31. 31.
    Grijalba, M. T., Vercesi, A. E., and Schreier, Sh. (1999) Biochemistry, 38, 13279–13287.PubMedCrossRefGoogle Scholar
  32. 32.
    Massari, S., and Azzone, G. F. (1970) Eur. J. Biochem., 12, 301–309.PubMedCrossRefGoogle Scholar
  33. 33.
    Aon, M. A., Cortassa, S., Wei, A.-Ch., Grunnet, M., and O’Rourke, B. (2010) Biochim. Biophys. Acta, 1797, 71–80.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Kowaltowski, A. J., Seetharaman, S., Paucek, P., and Garlid, K. D. (2001) Am. J. Physiol., 280, H649–H657.Google Scholar
  35. 35.
    Cancherini, D., Trabuco, L. G., Reboucas, N. A., and Kowaltowski, A. J. (2003) Am. J. Physiol., 285, F1291–F1296.Google Scholar
  36. 36.
    Chizmadzhev, Y. A. (ed.) (1981) Membranes: Ionic Channels [in Russian], Mir, Moscow.Google Scholar
  37. 37.
    Bajgar, R., Seetharaman, S., Kowaltowski, A. J., Garlid, K. D., and Paucek, P. (2001) J. Biol. Chem., 276, 33369–33374.PubMedCrossRefGoogle Scholar
  38. 38.
    Brown, G. C. (1992) FASEB J., 6, 2961–2965.PubMedGoogle Scholar
  39. 39.
    Akopova, O. V., Nosar, V. I., Bouryi, V. A., Mankovska, I. N., and Sagach, V. F. (2010) Biochemistry (Moscow), 75, 1139–1147.CrossRefGoogle Scholar
  40. 40.
    Bernardi, P., and Azzone, G. F. (1983) Biochim. Biophys. Acta, 724, 212–223.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • O. V. Akopova
    • 1
    Email author
  • L. I. Kolchinskaya
    • 1
  • V. I. Nosar
    • 1
  • V. A. Bouryi
    • 1
  • I. N. Mankovska
    • 1
  • V. F. Sagach
    • 1
  1. 1.Bogomolets Institute of PhysiologyNational Academy of Sciences of UkraineKiev-24Ukraine

Personalised recommendations