Biochemistry (Moscow)

, Volume 79, Issue 1, pp 25–30 | Cite as

A novel approach for fluorescent visualization of glycyrrhetic acid on a cell with a quantum dot

  • Jie HouEmail author
  • Qian Shi
  • Meirong Cao
  • Pengwei Pan
  • Guangbo Ge
  • Xuran Fan
  • Gang Bai
  • Yi Xin


Glycyrrhetic acid (GA), a pentacyclic triterpenoid derivative obtained from hydrolysis of glycyrrhizic acid, was found to have synergistic anti-asthmatic effects with the β2-adrenergic receptor (β2AR) agonist via the β2AR-mediated pathway. This study visualized the location of GA on a human cell expressing β2AR via chemical biological approaches. A CdTe/ZnS quantum dot modified with an alkynyl group (QD-AL) was first synthesized, and an azide-terminal GA (ATGA) was also prepared. The QD-AL was used for fluorescence visualization of the distribution of GA on human embryonic kidney 293 cells expressing fusion β2AR (HEK293-β2AR) through the “click reaction” between QD-AL and ATGA. The average size of the QD-AL nanoparticle was about 10 nm, and its fluorescent emission wavelength was 620 nm. The location of GA on the HEK293-β2AR cell membrane can be visualized by the click reaction (between QD-AL and ATGA). The ability of QD-AL targeting to ATGA on the cell membrane of a HEK293-β2AR cell was further investigated using both confocal laser-scanning microscopy and a cellular uptake-inhibition assay. The results reveal that QD-AL can recognize ATGA on the cell membrane through the click reaction, which provides a new approach for visualizing the location of GA on the cell in an indirect way, and it can be applied to explore the synergistic anti-asthmatic mechanism of GA with β2AR agonist through the β2AR mediated pathway.

Key words

fluorescent visualization glycyrrhetic acid quantum dot click reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akamatsu, H., Komura, J., Asada, Y., and Niwa, Y. (1991) Planta Med., 57, 119–121.PubMedCrossRefGoogle Scholar
  2. 2.
    Pompei, R., Flore, O., Marccialis, M. A., Pani, A., and Loddo, B. (1979) Nature, 281, 689–690.PubMedCrossRefGoogle Scholar
  3. 3.
    Van Rossum, T. G., Vulto, A. G., Hop, W. C., Brouwer, J. T., Niesters, H. G., and Schalm, S. W. (1999) J. Gastroenterol. Hepatol., 14, 1093–1099.PubMedCrossRefGoogle Scholar
  4. 4.
    Tamir, S., Eizenberg, M., Somjen, D., Stern, N., Shelach, R., Kaye, A., and Vaya, J. (2000) Cancer Res., 60, 5704–5709.PubMedGoogle Scholar
  5. 5.
    Akao, T., Hattori, M., Kanaoka, M., Yamamoto, K., Namba, T., and Kobashi, K. (1991) Biochem. Pharmacol., 41, 1025–1029.PubMedCrossRefGoogle Scholar
  6. 6.
    Yamamura, Y., Santa, T., Kotaki, H., Uchino, K., Sawada, Y., and Iga, T. (1995) Biol. Pharm. Bull., 18, 337–341.PubMedCrossRefGoogle Scholar
  7. 7.
    Bai, G., Yang, Y., Shi, Q., Liu, Z., Zhang, Q., and Zhu, Y. Y. (2008) Acta Pharmacol. Sin., 29, 1187–1194.PubMedCrossRefGoogle Scholar
  8. 8.
    Qian Shi, Yuanyuan Hou, Yang Yang, and Gang Bai (2011) Biol. Pharm. Bull., 34, 609–617.CrossRefGoogle Scholar
  9. 9.
    Qian Shi, Yuanyuan Hou, Jie Hou, Penwei Pan, Ze Liu, Min Jiang, Jie Gao, and Gang Bai (2012) Plos One, 7, e44921.CrossRefGoogle Scholar
  10. 10.
    Sibirtsev, V. S. (2007) Biochemistry (Moscow), 72, 887–900.CrossRefGoogle Scholar
  11. 11.
    Chan, W. C. W., and Nie, S. (1998) Science, 281, 2016–2018.PubMedCrossRefGoogle Scholar
  12. 12.
    Gao, X., Yang, L., Petros, J. A., Marshall, F. F., Simons, J. W., and Nie, S. (2005) Curr. Opin. Biotechnol., 16, 63–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., and Weiss, S. (2005) Science, 307, 538–544.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., and Nann, T. (2011) Nature Methods, 5, 765–775.Google Scholar
  15. 15.
    Riegler, J., Nick, P., Kielmann, U., and Nann, T. (2003) J. Nanosci. Nanotechnol., 3, 380–385.PubMedCrossRefGoogle Scholar
  16. 16.
    Medintz, I. L., Uyeda, H. T., Goldman, E. R., and Mattoussi, H. (2005) Nat. Mater., 4, 435–446.PubMedCrossRefGoogle Scholar
  17. 17.
    Burns, A., Ow, H., and Wiesner, U. (2005) Chem. Soc. Rev., 35, 1028–1042.CrossRefGoogle Scholar
  18. 18.
    Alivisatos, A. P. (1996) Science, 271, 933–937.CrossRefGoogle Scholar
  19. 19.
    Kucur, E., Boldt, F. M., Cavaliere-Jaricot, S., Ziegler, J., and Nann, T. (2007) Anal. Chem., 79, 8987–8993.PubMedCrossRefGoogle Scholar
  20. 20.
    Maksimov, E. G., Kurashov, V. N., Mamedov, M. D., and Paschenko, V. Z. (2012) Biochemistry (Moscow), 77, 624–630.CrossRefGoogle Scholar
  21. 21.
    Gaponik, N., Talapin, D. V., Rogach, A. L., Hoppe, K., Shevchenko, E. V., Kornowski, A., Eychmuller, A., and Weller, H. (2002) J. Phys. Chem. B, 106, 7177–7185.CrossRefGoogle Scholar
  22. 22.
    Jifang Weng, Xingtao Song, Liang Li, Huifeng Qian, Keying Chen, Xuemin Xu, Chengxi Cao, and Jicun Ren (2006) Talanta, 70, 397–402.CrossRefGoogle Scholar
  23. 23.
    Clarke, S. J., Hollmann, C. A., Aldaye, F. A., and Nadeau, J. L. (2008) Bioconj. Chem., 19, 562–568.CrossRefGoogle Scholar
  24. 24.
    Youngseon Choi, Minjung Kim, Yoojin Cho, Eunsuk Yun, and Rita Song (2013) Nanotechnology, 24, 075101.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Jie Hou
    • 1
    • 2
    Email author
  • Qian Shi
    • 2
  • Meirong Cao
    • 2
  • Pengwei Pan
    • 2
  • Guangbo Ge
    • 3
  • Xuran Fan
    • 3
  • Gang Bai
    • 2
  • Yi Xin
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyDalian Medical UniversityDalianChina
  2. 2.College of PharmacyNankai UniversityTianjinChina
  3. 3.Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations