Advertisement

Biochemistry (Moscow)

, Volume 78, Issue 13, pp 1554–1566 | Cite as

Antiaggregation activity of chaperones and its quantification

  • B. I. KurganovEmail author
Review

Abstract

Methods for the quantitative estimation of the antiaggregation activity of protein chaperones (first of all, small heat shock proteins) and chemical chaperones including amino acids, carbohydrates, polyamines, and cyclodextrins are discussed. Based on analysis of the plots of light scattering intensity or apparent optical absorption versus time, formulas for calculation of initial rate of aggregation of protein substrate and lag period on kinetic curves of aggregation were derived. Possible determination of the stoichiometry of chaperone-protein substrate complex from the dependence of the initial rate of aggregation on the ratio of protein chaperone/protein substrate concentrations is discussed. To characterize efficiency of the protective action of chemical chaperones, the [L]0.5 value can be used ([L]0.5 is the concentration of a chemical chaperone at which twofold decrease in the initial rate of aggregation occurs). Methods for quantitative estimation of the combined protective action of chaperones are discussed.

Key words

small heat shock proteins chemical chaperones protein aggregation chaperone-like activity cyclodextrins 

Abbreviations

GAPDH

glycerlaldehyde-3-phosphate dehydrogenase

HP-β-CD

2-hydroxypropyl-β-cyclodextrin

Phb

glycogen phosphorylase b

sHsp

small heat shock protein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hartl, F. U., and Hayer-Hartl, M. (2002) Science, 295, 1852–1858.PubMedGoogle Scholar
  2. 2.
    Markossian, K. A., and Kurganov, B. I. (2004) Biochemistry (Moscow), 69, 971–984.Google Scholar
  3. 3.
    Ellis, R. J. (2011) in Folding for the Synapse (Wyttenbach, A., and O’Connor, V., eds.) Springer, New York, pp. 9–34.Google Scholar
  4. 4.
    Invernizzi, G., Papaleo, E., Sabate, R., and Ventura, S. (2012) Int. J. Biochem. Cell Biol., 44, 1541–1554.PubMedGoogle Scholar
  5. 5.
    Kurganov, B. I. (2012) Biochem. Anal. Biochem., 1, e107.Google Scholar
  6. 6.
    Tyedmers, J., Mogk, A., and Bukau, B. (2010) Nat. Rev. Mol. Cell. Biol., 11, 777–788.PubMedGoogle Scholar
  7. 7.
    Richter, K., Haslbeck, M., and Buchner, J. (2010) Mol. Cell, 40, 253–266.PubMedGoogle Scholar
  8. 8.
    Hartl, F. U., Bracher, A., and Hayer-Hartl, M. (2010) Nature, 475, 324–332.Google Scholar
  9. 9.
    Van Montfort, R., Slingsby, C., and Vierling, E. (2002) Adv. Protein Chem., 59, 105–156.Google Scholar
  10. 10.
    Narberhaus, F. (2002) Microbiol. Mol. Biol. Rev., 66, 64–93.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Haslbeck, M., and Buchner, J. (2002) Prog. Mol. Subcell. Biol., 28, 37–59.PubMedGoogle Scholar
  12. 12.
    Panasenko, O. O., Kim, M. V., and Gusev, N. B. (2003) Uspekhi Biol. Khim., 43, 59–98.Google Scholar
  13. 13.
    Haslbeck, M., Franzmann, T., Weinfurtner, D., and Buchner, J. (2005) Nat. Struct. Mol. Biol., 12, 842–846.PubMedGoogle Scholar
  14. 14.
    Sun, Y., and MacRae, T. H. (2005) Cell. Mol. Life Sci., 62, 2460–2476.PubMedGoogle Scholar
  15. 15.
    Nakamoto, H., and Vhgh, L. (2007) Cell. Mol. Life Sci., 64, 294–306.PubMedGoogle Scholar
  16. 16.
    Vos, M. J., Hageman, J., Carra, S., and Kampinga, H. H. (2008) Biochemistry, 47, 7001–7011.PubMedGoogle Scholar
  17. 17.
    Kappe, G., Boelens, W. C., and de Jong, W. W. (2010) Cell Stress Chaperones, 15, 457–461.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Baldwin, A. J., Lioe, H., Hilton, G. R., Baker, L. A., Rubinstein, J. L., Kay, L. E., and Benesch, J. L. P. (2011) Structure, 19, 1855–1863.PubMedGoogle Scholar
  19. 19.
    Baldwin, A. J., Lioe, H., Robinson, C. V., Kay, L. E., and Benesch, J. L. P. (2011) J. Mol. Biol., 413, 297–309.PubMedGoogle Scholar
  20. 20.
    Jehle, S., Vollmar, B. S., Bardiaux, B., Dove, K. K., Rajagopal, P., Gonen, T., Oschkinat, H., and Klevit, R. E. (2011) Proc. Natl. Acad. Sci. USA, 108, 6409–6414.PubMedGoogle Scholar
  21. 21.
    Mymrikov, E. V., Seit-Nebi, A. S., and Gusev, N. B. (2011) Physiol. Rev., 91, 1123–1159.PubMedGoogle Scholar
  22. 22.
    Hilton, G. R., Lioe, H., Stengel, F., Baldwin, A. J., and Benesch, J. L. P. (2013) Top. Curr. Chem., 328, 69–98.PubMedGoogle Scholar
  23. 23.
    Lee, G. J., Roseman, A. M., Saibil, H. R., and Vierling, E. (1997) EMBO J., 16, 659–671.PubMedGoogle Scholar
  24. 24.
    Ehrnsperger, M., Graber, S., Gaestel, M., and Buchner, J. (1997) EMBO J., 16, 221–229.PubMedGoogle Scholar
  25. 25.
    Veinger, L., Diamant, S., Buchner, J., and Goloubinoff, P. (1998) J. Biol. Chem., 273, 11032–11037.PubMedGoogle Scholar
  26. 26.
    Lee, G. J., and Vierling, E. (2000) Plant Physiol., 122, 189–198.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Wang, K., and Spector, A. (2000) Eur. J. Biochem., 267, 4705–4712.PubMedGoogle Scholar
  28. 28.
    Bova, M. P., Ding, L. L., Horwitz, J., and Fung, B. K. (1997) J. Biol. Chem., 272, 29511–29517.PubMedGoogle Scholar
  29. 29.
    Sun, T. X., Akhtar, N. J., and Liang, J. J. (1998) FEBS Lett., 430, 401–404.PubMedGoogle Scholar
  30. 30.
    Bova, M. P., McHaourab, H. S., Han, Y., and Fung, B. K. (2000) J. Biol. Chem., 275, 1035–1042.PubMedGoogle Scholar
  31. 31.
    Bova, M. P., Huang, Q., Ding, L., and Horwitz, J. (2002) J. Biol. Chem., 277, 38468–38475.PubMedGoogle Scholar
  32. 32.
    Baldwin, A. J., Hilton, G. R., Lioe, H., Bagneris, C., Benesch, J. L., and Kay, L. E. (2011) J. Mol. Biol., 413, 310–320.PubMedGoogle Scholar
  33. 33.
    Baldwin, A. J., Walsh, P., Hansen, D. F., Hilton, G. R., Benesch, J. L. P., Sharpe, S., and Kay, L. E. (2012) J. Am. Chem. Soc., 134, 15343–15350.PubMedGoogle Scholar
  34. 34.
    Basha, E., O’Neill, H., and Vierling, E. (2012) Trends Biochem. Sci., 37, 106–117.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Stromer, T., Ehrnsperger, M., Gaestel, M., and Buchner, J. (2003) J. Biol. Chem., 278, 18015–18021.PubMedGoogle Scholar
  36. 36.
    Friedrich, K. L., Giese, K. C., Buan, N. R., and Vierling, E. (2004) J. Biol. Chem., 279, 1080–1089.PubMedGoogle Scholar
  37. 37.
    Benesch, J. L., and Ruotolo, B. T. (2011) Curr. Opin. Struct. Biol., 21, 641–649.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Stengel, F., Baldwin, A. J., Painter, A. J., Jaya, N., Basha, E., Kay, L. E., Vierling, E., Robinson, C. V., and Benesch, J. L. P. (2010) Proc. Natl. Acad. Sci. USA, 107, 2007–2012.PubMedGoogle Scholar
  39. 39.
    Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F. X., and Kiefhaber, T. (1991) Biochemistry, 30, 1586–1591.PubMedGoogle Scholar
  40. 40.
    Hartman, D. J., Surin, B. P., Dixon, N. E., Hoogenraad, N. J., and Hoj, P. B. (1993) Proc. Natl. Acad. Sci. USA, 90, 2276–2280.PubMedGoogle Scholar
  41. 41.
    Weber, F., Keppel, F., Georgopoulos, C., Hayer-Hartl, M. K., and Hartl, F. U. (1998) Nat. Struct. Biol., 5, 977–985.PubMedGoogle Scholar
  42. 42.
    Naletova, I. N., Muronetz, V. I., and Schmalhausen, E. V. (2006) Biochim. Biophys. Acta, 1764, 831–838.PubMedGoogle Scholar
  43. 43.
    Huq, S., Sueoka, K., Narumi, S., Arisaka, F., and Nakamoto, H. (2010) Biosci. Biotechnol. Biochem., 74, 2273–2280.PubMedGoogle Scholar
  44. 44.
    Li, Y., Zheng, Z., Ramsey, A., and Chen, L. (2010) J. Pept. Sci., 16, 693–700.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Markossian, K. A., Golub, N. V., Chebotareva, N. A., Asryants, R. A., Naletova, I. N., Muronez, V. I., Muranov, K. O., and Kurganov, B. I. (2010) Protein J., 29, 11–25.PubMedGoogle Scholar
  46. 46.
    Eronina, T. B., Chebotareva, N. A., Bazhina, S. G., Kleymenov, S. Y., Naletova, I. N., Muronetz, V. I., and Kurganov, B. I. (2010) Macromol. Biosci., 10, 768–774.PubMedGoogle Scholar
  47. 47.
    Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L., and Sigler, P. B. (1994) Nature, 371, 578–586.PubMedGoogle Scholar
  48. 48.
    Hartl, F. U., and Hayer-Hartl, M. (2009) Nat. Struct. Mol. Biol., 16, 574–581.PubMedGoogle Scholar
  49. 49.
    Clare, D. K., Bakkes, P. J., van Heerikhuizen, V., van der Vies, S. M., and Saibil, H. R. (2009) Nature, 457, 107–110.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Jewett, A. I., and Shea, J.-E. (2010) Cell. Mol. Life Sci., 67, 255–276.PubMedGoogle Scholar
  51. 51.
    Marchenkov, V. V., and Semisotnov, G. V. (2009) Int. J. Mol. Sci., 10, 2066–2083.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Wiech, H., Buchner, J., Zimmermann, R., and Jakob, U. (1992) Nature, 358, 169–170.PubMedGoogle Scholar
  53. 53.
    Jakob, U., Lilie, H., Meyer, I., and Buchner, J. (1995) J. Biol. Chem., 270, 7288–7294.PubMedGoogle Scholar
  54. 54.
    Youker, R. T., Walsh, P., Beilharz, T., Lithgow, T., and Brodsky, J. L. (2004) Mol. Biol. Cell, 15, 4787–4797.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Muller, L., Schaupp, A., Walerych, D., Wegele, H., and Buchner, J. (2004) J. Biol. Chem., 279, 48846–48854.PubMedGoogle Scholar
  56. 56.
    Evans, C. G., Wisen, S., and Gestwicki, J. E. (2006) J. Biol. Chem., 281, 33182–33191.PubMedGoogle Scholar
  57. 57.
    Wayne, N., and Bolon, D. N. (2010) J. Mol. Biol., 401, 931–939.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Taneja, S., and Ahmad, F. (1994) Biochem. J., 303, 147–153.PubMedGoogle Scholar
  59. 59.
    Xie, G., and Timasheff, S. N. (1997) Biophys. Chem., 64, 25–43.PubMedGoogle Scholar
  60. 60.
    Anjum, F., Rishi, V., and Ahmad, F. (2000) Biochim. Biophys. Acta, 1476, 75–84.PubMedGoogle Scholar
  61. 61.
    Bolen, D. W. (2001) Methods Mol. Biol., 168, 17–36.PubMedGoogle Scholar
  62. 62.
    Rosgen, J., Pettitt, B. M., and Bolen, D. W. (2005) Biophys. J., 89, 2988–2997.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Kumar, R. (2009) Arch. Biochem. Biophys., 491, 1–6.PubMedGoogle Scholar
  64. 64.
    Politi, R., and Harries, D. (2010) Chem. Commun., 46, 6449–6451.Google Scholar
  65. 65.
    Welch, W. J., and Brown, C. R. (1996) Cell Stress Chaperones, 1, 109–115.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Papp, E., and Csermely, P. (2006) Handb. Exp. Pharmacol., 172, 417–436.Google Scholar
  67. 67.
    Paul, S., Punam, S., and Chaudhuri, T. K. (2007) FEBS J., 274, 6000–6010.PubMedGoogle Scholar
  68. 68.
    Leandro, P., and Gomes, C. M. (2008) Mini Rev. Med. Chem., 8, 901–911.PubMedGoogle Scholar
  69. 69.
    Rajan, R. S., Tsumoto, K., Tokunaga, M., Tokunaga, H., Kita, Y., and Arakawa, T. (2011) Curr. Med. Chem., 18, 1–15.PubMedGoogle Scholar
  70. 70.
    Singer, M. A., and Lindquist, S. (1998) Mol. Cell, 1, 639–648.PubMedGoogle Scholar
  71. 71.
    Arora, A., Ha, C., and Park, C. B. (2004) FEBS Lett., 564, 121–125.PubMedGoogle Scholar
  72. 72.
    Ignatova, Z., and Gierasch, L. M. (2007) Methods Enzymol., 428, 355–372.PubMedGoogle Scholar
  73. 73.
    Xia, Y., Park, Y. D., Mu, H., Zhou, H. M., Wang, X. Y., and Meng, F. G. (2007) Int. J. Biol. Macromol., 40, 437–443.PubMedGoogle Scholar
  74. 74.
    Hamada, H., Arakawa, T., and Shiraki, K. (2009) Curr. Pharm. Biotechnol., 10, 400–407.PubMedGoogle Scholar
  75. 75.
    Nayak, A., Lee, C. C., McRae, G. J., and Belfort, G. (2009) Biotechnol. Prog., 25, 1508–1514.PubMedGoogle Scholar
  76. 76.
    Macchi, F., Eisenkolb, M., Kiefer, H., and Otzen, D. E. (2012) Int. J. Mol. Sci., 13, 3801–3819.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Charman, S. A., Mason, K. L., and Charman, W. N. (1993) Pharm. Res., 10, 954–962.PubMedGoogle Scholar
  78. 78.
    Yu, J., Bakhos, L., Chang, L., Holterman, M. J., Klein, W. L., and Venton, D. L. (2002) J. Mol. Neurosci., 19, 51–55.PubMedGoogle Scholar
  79. 79.
    Tavornvipas, S., Tajiri, S., Hirayama, F., Arima, H., and Uekama, K. (2004) Pharm. Res., 21, 2369–2376.PubMedGoogle Scholar
  80. 80.
    Tavornvipas, S., Hirayama, F., Takeda, S., Arima, H., and Uekama, K. (2006) J. Pharm. Sci., 95, 2722–2729.PubMedGoogle Scholar
  81. 81.
    Bajorunaite, E., Cirkovas, A., Radzevicius, K., Larsen, K. L., Sereikaite, J., and Bumelis, V. A. (2009) Int. J. Biol. Macromol., 44, 428–434.PubMedGoogle Scholar
  82. 82.
    Samra, H. S., He, F., Bhambhani, A., Pipkin, J. D., Zimmerer, R., Joshi, S. B., and Middaugh, C. R. (2010) J. Pharm. Sci., 99, 2800–2818.PubMedGoogle Scholar
  83. 83.
    Maloletkina, O. I., Markossian, K. A., Belousova, L. V., Kleimenov, S. Y., Orlov, V. N., Makeeva, V. F., and Kurganov, B. I. (2010) Biophys. Chem., 148, 121–130.PubMedGoogle Scholar
  84. 84.
    Maloletkina, O. I., Markossian, K. A., Chebotareva, N. A., Asryants, R. A., Kleymenov, S. Y., Poliansky, N. B., Muranov, K. O., Makeeva, V. F., and Kurganov, B. I. (2012) Biophys. Chem., 163–164, 11–20.PubMedGoogle Scholar
  85. 85.
    Kurganov, B. I. (1998) Biochemistry (Moscow), 63, 364–366.Google Scholar
  86. 86.
    Ferrone, F. (1999) Methods Enzymol., 309, 256–274.PubMedGoogle Scholar
  87. 87.
    Eronina, T. B., Chebotareva, N. A., Bazhina, S. G., Makeeva, V. F., Kleymenov, S. Y., and Kurganov, B. I. (2009) Biophys. Chem., 141, 66–74.PubMedGoogle Scholar
  88. 88.
    Eronina, T. B., Chebotareva, N. A., Kleymenov, S. Y., Roman, S. G., Makeeva, V. F., and Kurganov, B. I. (2010) Biopolymers, 93, 986–993.PubMedGoogle Scholar
  89. 89.
    Maloletkina, O. I., Markosyan, K. A., Asryants, R. A., Orlov, V. N., and Kurganov, B. I. (2009) Dokl. Biochem. Biophys., 427, 199–201.PubMedGoogle Scholar
  90. 90.
    Maloletkina, O. I., Markossian, K. A., Asryants, R. A., Semenyuk, P. I., Makeeva, V. F., and Kurganov, B. I. (2010) Int. J. Biol. Macromol., 46, 487–492.PubMedGoogle Scholar
  91. 91.
    Bumagina, Z. M., Gurvits, B. Y., Artemova, N. V., Muranov, K. O., and Kurganov, B. I. (2010) Biophys. Chem., 146, 108–117.PubMedGoogle Scholar
  92. 92.
    Bumagina, Z., Gurvits, B., Artemova, N., Muranov, K., and Kurganov, B. (2010) Int. J. Mol. Sci., 11, 4556–4579.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Markov, D. I., Pivovarova, A. V., Chernik, I. S., Gusev, N. B., and Levitsky, D. I. (2008) FEBS Lett., 582, 1407–1412.PubMedGoogle Scholar
  94. 94.
    Bhattacharyya, J., Shipova, E. V., Santhoshkumar, P., Sharma, K. K., and Ortwerth, B. J. (2007) Biochemistry, 46, 14682–14692.PubMedGoogle Scholar
  95. 95.
    Sgarbossa, A., Buselli, D., and Lenci, F. (2008) FEBS Lett., 582, 3288–3292.PubMedGoogle Scholar
  96. 96.
    Khanova, H. A., Markossian, K. A., Kleimenov, S. Y., Levitsky, D. I., Chebotareva, N. A., Golub, N. V., Asryants, R. A., Muronetz, V. I., Saso, L., Yudin, I. K., Muranov, K. O., Ostrovsky, M. A., and Kurganov, B. I. (2007) Biophys. Chem., 125, 521–531.PubMedGoogle Scholar
  97. 97.
    Meremyanin, A. V., Eronina, T. B., Chebotareva, N. A., and Kurganov, B. I. (2008) Biopolymers, 89, 124–134.PubMedGoogle Scholar
  98. 98.
    Chebotareva, N. A., Kurganov, B. I., Asryants, R. A., Muranov, K. O., and Ostrovsky, M. A. (2009) Dokl. Biochem. Biophys., 428, 245–248.PubMedGoogle Scholar
  99. 99.
    Sabbaghian, M., Ebrahim-Habibi, A., and Nemat-Gorgani, M. (2009) Int. J. Biol. Macromol., 44, 156–162.PubMedGoogle Scholar
  100. 100.
    Khanova, H. A., Markossian, K. A., Kurganov, B. I., Samoilov, A. M., Kleimenov, S. Y., Levitsky, D. I., Yudin, I. K., Timofeeva, A. C., Muranov, K. O., and Ostrovsky, M. A. (2005) Biochemistry, 44, 15480–15487.PubMedGoogle Scholar
  101. 101.
    Markossian, K. A., Golub, N. V., Khanova, H. A., Levitsky, D. I., Poliansky, N. B., and Kurganov, B. I. (2008) Biochim. Biophys. Acta, 1784, 1286–1293.PubMedGoogle Scholar
  102. 102.
    Eronina, T., Borzova, V., Maloletkina, O., Kleymenov, S., Asryants, R. A., Markossian, K. A., and Kurganov, B. (2011) PLoS One, 6, e22154.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Golub, N., Meremyanin, A., Markossian, K., Eronina, T., Chebotareva, N. A., Asryants, R., Muronets, V., and Kurganov, B. (2007) FEBS Lett., 581, 4223–4227.PubMedGoogle Scholar
  104. 104.
    Markossian, K. A., Kurganov, B. I., Levitsky, D. I., Khanova, H. A., Chebotareva, N. A, Samoilov, A. M., Eronina, T. B., Fedurkina, N. V., Mitskevich, L. G., Meremyanin, A. V., Kleymenov, S. Yu., Makeeva, V. F., Muronets, V. I., Naletova, I. N., Shalova, I. N., Asryants, R. A., Schmalhausen, E. V., Saso, L., Panyukov, Yu. V., Dobrov, E. N., Yudin, I. K., Timofeeva A. C., Muranov, K. O., and Ostrovsky, M. A. (2006) in Protein Folding: New Research (Obalinsky, T. R., ed.) Nova Science Publishers Inc., New York, pp. 89–171.Google Scholar
  105. 105.
    Roman, S. G., Chebotareva, N. A., and Kurganov, B. I. (2012) Int. J. Biol. Macromol., 50, 1341–1345.PubMedGoogle Scholar
  106. 106.
    Kurganov, B. (2013) Biochem. Anal. Biochem., 2, e107.Google Scholar
  107. 107.
    Roman, S. G., Chebotareva, N. A., Eronina, T. B., Kleymenov, S. Yu., Makeeva, V. F., Muranov, K. O., Poliansky, N. B., and Kurganov, B. I. (2011) Biochemistry, 50, 10607–10623.PubMedGoogle Scholar
  108. 108.
    Kurganov, B. I. (2002) Uspekhi Biol. Khim., 42, 89–138.Google Scholar
  109. 109.
    Kurganov, B. I. (2002) Biochemistry (Moscow), 67, 409–422.Google Scholar
  110. 110.
    Kurganov, B. I. (2002) Tsinghua Science and Technology, 7, 331–339.Google Scholar
  111. 111.
    Kurganov, B. I. (2005) in Chemical and Biological Kinetics. New Horizons, Vol. 2 (Biological Kinetics) (Burlakova, E. B., and Varfolomeev, S. D., eds.) Koninklijke Brill NV, Leiden, The Netherlands, pp. 251–279.Google Scholar
  112. 112.
    Wang, K., and Kurganov, B. I. (2003) Biophys. Chem., 106, 97–109.PubMedGoogle Scholar
  113. 113.
    Kurganov, B. I., Rafikova, E. R., and Dobrov, E. N. (2002) Biochemistry (Moscow), 67, 525–533.Google Scholar
  114. 114.
    Kurganov, B. I., Dobrov, E. N., and Rafikova, E. R. (2002) in Proc. II Int. Symp. “Problems of Biochemistry, Radiation and Astrobiology”, May 29–June 1 2001, Dubna, The United Nuclear Research Institute Publishers, pp. 100–104.Google Scholar
  115. 115.
    Fedurkina, N. V., Belousova, L. V., Mitskevich, L. G., Zhou, H. M., Chang, Z., and Kurganov, B. I. (2006) Biochemistry (Moscow), 71, 325–331.Google Scholar
  116. 116.
    Khodarahmi, R., Beyrami, M., and Soori, H. (2008) Arch. Biochem. Biophys., 477, 67–76.PubMedGoogle Scholar
  117. 117.
    Mayr, C., Richter, K., Lilie, H., and Buchner, J. (2000) J. Biol. Chem., 275, 34140–34146.PubMedGoogle Scholar
  118. 118.
    Khodarahmi, R., Beyrami, M., and Soori, H. (2008) Arch. Biochem. Biophys., 477, 67–76.PubMedGoogle Scholar
  119. 119.
    Yousefi, R., Shchutskaya, Y. Y., Zimny, J., Gaudin, J. C., Moosavi-Movahedi, A. A., Muronetz, V. I., Zuev, Yu. F., Chobert, J.-M., and Haertle, T. (2009) Biopolymers, 91, 623–632.PubMedGoogle Scholar
  120. 120.
    Zakharchenko, N. L., Konnova, T. A., Gogoleva, N. E., Fajzullin, D. A., Ertle, T., and Zuev, Yu. F. (2012) Bioorg. Khim., 38, 223–228.PubMedGoogle Scholar
  121. 121.
    Roher, N., Miro, F., Boldyreff, B., Llorens, F., Plana, M., Issinger, O. G., and Itarte, E. (2001) Eur. J. Biochem., 268, 429–436.PubMedGoogle Scholar
  122. 122.
    Raman, B., Ramakrishna, T., and Rao, C. M. (1995) FEBS Lett., 365, 133–136.PubMedGoogle Scholar
  123. 123.
    Srinivas, V., Datta, S. A., Ramakrishna, T., and Rao, Ch. M. (2001) Mol. Vision, 7, 114–119.Google Scholar
  124. 124.
    Ganadu, M. L., Aru, M., Mura, G. M., Coi, A., Mlynarz, P., and Kozlowski, H. (2004) J. Inorg. Biochem., 98, 1103–1109.PubMedGoogle Scholar
  125. 125.
    Spinozzi, F., Mariani, P., Rustichelli, F., Amenitsch, H., Bennardini, F., Mura, G. M., Coi, A., and Ganadu, M. L. (2006) Biochim. Biophys. Acta, 1764, 677–687.PubMedGoogle Scholar
  126. 126.
    Wilcken, R., Wang, G., Boeckler, F. M., and Fersht, A. R. (2012) Proc. Natl. Acad. Sci. USA, 109, 13584–13589.PubMedGoogle Scholar
  127. 127.
    Kurganov, B. I. (1982) Allosteric Enzymes. Kinetic Behaviour, John Wiley & Sons, Chichester, pp. 56–60.Google Scholar
  128. 128.
    Fändrich, M. (2007) J. Mol. Biol., 365, 1266–1270.PubMedGoogle Scholar
  129. 129.
    Srinivas, V., Raman, B., Rao, K. S., Ramakrishna, T., and Rao, Ch. M. (2003) Protein Sci., 12, 1262–1270.PubMedGoogle Scholar
  130. 130.
    Srinivas, V., Raman, B., Rao, K. S., Ramakrishna, T., and Rao, Ch. M. (2005) Mol. Vis., 11, 249–255.PubMedGoogle Scholar
  131. 131.
    Ecroyd, H., and Carver, J. A. (2008) FEBS J., 275, 935–947.PubMedGoogle Scholar
  132. 132.
    Silonova, G. V., Livanova, N. B., and Kurganov, B. I. (1969) Mol. Biol. (Moscow), 3, 768–778.Google Scholar
  133. 133.
    Yousefi, R., and Jalili, S. (2011) Colloids Surf. B. Biointerfaces, 88, 497–504.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations