Advertisement

Biochemistry (Moscow)

, Volume 78, Issue 13, pp 1539–1553 | Cite as

Biocatalytic synthesis of conducting polymers and prospects for its application

  • G. V. Otrokhov
  • O. V. Morozova
  • I. S. Vasil’eva
  • G. P. Shumakovich
  • E. A. Zaitseva
  • M. E. Khlupova
  • A. I. YaropolovEmail author
Review

Abstract

Enzymatic methods of synthesis of conducting polymers, physicochemical properties of the resulting products, and mechanisms of the reactions are considered. The enzymes involved in oxidative polymerization of monomers are briefly characterized. Examples of practical application of enzymatically synthesized conducting polymers are given.

Key words

conducting polymer physicochemical properties enzymatic polymerization redox mediator laccase peroxidase practical application 

Abbreviations

ABTS

diammonium 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate)

APS

ammonium persulfate

CP

conducting polymers

CSA

camphorsulfonic acid

EDOT

3,4-ethylenedioxythiophene

HP

horseradish peroxidase

NHE

normal hydrogen electrode

PAMPS

poly(2-acrylamido-2-methyl-1-propanesulfonic acid)

PANI

polyaniline

PEDOT

poly(3,4-ethylenedioxythiophene)

PP

polypyrrole

SDBS

sodium dodecylbenzenesulfonate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Syed, A. A., and Dinesan, M. K. (1991) Talanta, 38, 815–837.PubMedGoogle Scholar
  2. 2.
    Diaz, A. F., Rubinson J. F., and Mark, H. B. (1988) Adv. Polym. Sci., 84, 113–139.Google Scholar
  3. 3.
    Rao, P. S., Sathyanarayana, D. N., and Jeevananda, T. (2001) Advanced Functional Molecules and Polymers, Gordon and Breach, Tokyo.Google Scholar
  4. 4.
    Chandrakanthi, N., and Careem, M. A. (2000) Polym. Bull., 45, 113–120.Google Scholar
  5. 5.
    Genies, E. M., Boyle, A., Lapkowski, M., and Tsintavis, C. (1990) Synth. Met., 36, 139–182.Google Scholar
  6. 6.
    Pron, A., and Rannou, P. (2002) Prog. Polym. Sci., 27, 135–190.Google Scholar
  7. 7.
    Machida, S., Miyata, S., and Techagumpuch, A. (1989) Synth. Met., 31, 311–318.Google Scholar
  8. 8.
    George, P. M., Lyckman, A. W., LaVan, D. A., Hegde, A., Leung, Y., Avasare, R., Testa, C., Alexander, P. M., Langer, R., and Sur, M. (2005) Biomaterials, 26, 3511–3519.PubMedGoogle Scholar
  9. 9.
    Bredas, J. L., Chance, R. R., and Silbey, R. (1982) Phys. Rev. B., 26, 5843–5854.Google Scholar
  10. 10.
    Bredas, J. L., Themans, B., Andre, J. M., Chance, R. R., and Silbey, R. (1984) Synth. Met., 9, 265–274.Google Scholar
  11. 11.
    Bredas, J. L., and Street, G. B. (1985) Acc. Chem. Res., 18, 309–315.Google Scholar
  12. 12.
    Bocchi, V., Chierici, L., Gardini, G. P., Mondelli, R., Bocchi, V., Chierici, L., Gardini, G. P., and Mondelli, R. (1970) Tetrahedron, 26, 4073–4082.Google Scholar
  13. 13.
    Joo, J., Lee, J. K., Baeck, J. S., Kim, K. H., Oh, E. J., and Epstein, J. (2001) Synth. Met., 117, 45–51.Google Scholar
  14. 14.
    Gursoy, S. S., Uygun, A., and Tilki, T. (2010) J. Macromol. Sci. Pure Appl. Chem., 47, 681–688.Google Scholar
  15. 15.
    Zheng, H., Shi, Q., Du, K., Mei, Y., and Zhang, P. (2013) Mol. Divers., doi: 10.1007/s11030-013-9426-1.Google Scholar
  16. 16.
    Lee, G. J., Lee, S. H., Ahn, K. S., and Kim, K. H. (2002) J. Appl. Polym. Sci., 84, 2583–2590.Google Scholar
  17. 17.
    Oh, E. J., and Jang, K. S. (2001) Synth. Met., 119, 109–110.Google Scholar
  18. 18.
    Qi, Z., and Pickup, P. G. (1997) Chem. Mater., 9, 2934–2939.Google Scholar
  19. 19.
    Armes, S. P. (1987) Synth. Met., 20, 365–371.Google Scholar
  20. 20.
    Machida, S., Miyata, S., and Techagumpuch, A. (1989) Synth. Met., 31, 311–318.Google Scholar
  21. 21.
    Rapi, S., Bocchi, V., and Gardini, G. P. (1988) Synth. Met., 24, 217–221.Google Scholar
  22. 22.
    Chao, T. H., and March, J. (1988) J. Polym. Sci., Part A: Polym. Chem., 26, 743–753.Google Scholar
  23. 23.
    Menshikova, A. Y., Shabsels, B. M., and Evseeva, T. G. (2003) Zh. Prikl. Khim., 76, 851–855.Google Scholar
  24. 24.
    Dhawan, S. K., and Trivedi, D. C. (1993) Bull. Mater. Sci., 16, 371–380.Google Scholar
  25. 25.
    Sun, B., Jones, J. J., Burford, R. P., and Skyllas-Kazacos, M. (1989) J. Mater. Sci., 24, 4024–4029.Google Scholar
  26. 26.
    Whang, Y. E., Han, J. H., Motobe, T., Watanabe, T., and Miyata, S. (1991) Synth. Met., 45, 151–161.Google Scholar
  27. 27.
    Scharifker, B. R., Garcia-Pastoriza, E., and Marino, W. (1991) J. Electroanal. Chem., 300, 85–98.Google Scholar
  28. 28.
    Yamaura, M., Sato, K., and Hagiwara, T. (1991) Synth. Met., 41, 439–442.Google Scholar
  29. 29.
    Bradner, F. P., and Shapiro, J. S. (1988) Synth. Met., 26, 69–77.Google Scholar
  30. 30.
    Imisides, M. D., John, R., Riley, P. J., and Wallace, G. G. (1991) Electroanalysis, 3, 879–884.Google Scholar
  31. 31.
    John, R., and Wallace, G. G. (1992) Polym. Int., 27, 255–260.Google Scholar
  32. 32.
    Roncali, J., Blanchard, Ph., and Frere, P. (2005) J. Mater. Chem., 15, 1589–1610.Google Scholar
  33. 33.
    Czardybon, A., and Lapkowski, M. (2001) Synth. Met., 119, 161–162.Google Scholar
  34. 34.
    Pyshkina, O., Kubarkov, A., and Sergeyev, V. (2010) Sci. J. Riga Tech. Univ., 21, 51–54.Google Scholar
  35. 35.
    Baika, W., Luana, W., Zhaoa, R. H., Kooa, S., and Kimb, K.-S. (2009) Synth. Met., 159, 1244–1246.Google Scholar
  36. 36.
    Kumar, A., and Reynolds, J. (1996) Macromolecules, 29, 7629–7630.Google Scholar
  37. 37.
    Aasmundtveit, K. E., Samuelsen, E. J., Pettersson, L. A. A., Inganas, O., Johansson, T., and Feidenhans’l, R. (1999) Synth. Met., 101, 561–564.Google Scholar
  38. 38.
    Wu, C.-H., Don, T.-M., and Chiu, W.-Y. (2011) Polymer, 52, 1375–1384.Google Scholar
  39. 39.
    Gok, A., Omastova, M., and Yavuz, A. G. (2007) Synth. Met., 157, 23–29.Google Scholar
  40. 40.
    Groenendaal, L. B., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J. R. (2000) Adv. Mater., 12, 481–494.Google Scholar
  41. 41.
    Groenendaal, L. B., Zotti, G., Aubert, P., Waybright, S. M., and Reynolds, J. R. (2003) Adv. Mater., 15, 855–879.Google Scholar
  42. 42.
    Randrimahazaka, H., Noel, C., and Chevrot, C. (1999) J. Electroanal. Chem., 472, 103–111.Google Scholar
  43. 43.
    Yamato, H., Ohwa, M., and Wernet, W. (1995) J. Electroanal. Chem., 397, 163–170.Google Scholar
  44. 44.
    Yamato, H., Kai, K., Ohwa, M., Asakura, T., Koshiba, T., and Wernet, W. (1996) Synth. Met., 83, 125–130.Google Scholar
  45. 45.
    Yamato, H., Kai, K.-I., Ohwa, M., Wernet, W., and Matsumura, M. (1997) Electrochim. Acta, 42, 2517–2523.Google Scholar
  46. 46.
    Lima, A., Schottland, P., Sadki, S., and Chevrot, C. (1998) Synth. Met., 93, 33–41.Google Scholar
  47. 47.
    Sakmeche, N., Aaron, J. J., Fall, M., Aeiyach, S., Jouini, M., Lacroix, J. C., and Lacaze, P. C. (1996) Chem. Commun., 24, 2723–2724.Google Scholar
  48. 48.
    Lee, Y., Park, S., and Son, Y. (1999) Mol. Cryst. Liq. Cryst., 327, 237–240.Google Scholar
  49. 49.
    Kudoh, Y., Akami, K., and Matsuya, Y. (1998) Synth. Met., 98, 65–70.Google Scholar
  50. 50.
    Witayakran, S., and Ragauskas, A. J. (2009) Adv. Synth. Catal., 351, 1187–1209.Google Scholar
  51. 51.
    Kunamneni, A., Camarero, S., Garcia-Burgos, C., Plou, F. J., Ballesteros, A., and Alcalde, M. (2008) Microb. Cell Factories, 7, 32; doi: 10.1186/1475-2859-7-32.Google Scholar
  52. 52.
    Santaniello, E., Ferraboschi, P., Grisenti, P., and Manzocchi, A. (1992) Chem. Rev., 92, 1071–1140.Google Scholar
  53. 53.
    Seoane, G. (2000) Curr. Org. Chem., 4, 283–304.Google Scholar
  54. 54.
    Farrell, R. L., Murtagh, K. E., Tien, M., Mozuch, M. D., and Kirk, T. K. (1989) Enzyme Microb. Technol., 11, 322–328.Google Scholar
  55. 55.
    Wakamatsu, K., and Takahama, U. (1993) Physiol. Plants, 88, 167–171.Google Scholar
  56. 56.
    Dunford, H. B. (1991) Peroxidases in Chemistry and Biology, Vol. 2, CRC Press, Inc., pp. 1–24.Google Scholar
  57. 57.
    McEldoon, J. P., and Dordick, J. S. (1996) Biotechnol. Prog., 12, 555–558.Google Scholar
  58. 58.
    Nissum, M., Schodt, C. B., and Welinder, K. G. (2001) Biochim. Biophys. Acta, 1545, 339–348.PubMedGoogle Scholar
  59. 59.
    Sakharov, I. Y. (2004) Biochemistry (Moscow), 69, 823–829.Google Scholar
  60. 60.
    Gazaryan, I. G., and Lagrimini, L. M. (1996) Phytochemistry, 41, 1029–1034.PubMedGoogle Scholar
  61. 61.
    Kokkinakis, D. M., and Brooks, J. L. (1979) Plant Physiol., 63, 93–99.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Chance, B. (1949) Science, 109, 204–208.PubMedGoogle Scholar
  63. 63.
    Jones, P., and Dunford, H. B. (1977) Dokl. Bolg. Akad. Nauk, 5, 121–134.Google Scholar
  64. 64.
    Yoshida, H. (1883) J. Chem. Soc. Trans., 43, 472–486.Google Scholar
  65. 65.
    Baldrian, P. (2006) FEMS Microbiol. Rev., 30, 215–242.PubMedGoogle Scholar
  66. 66.
    Thurston, C. F. (1994) Microbiology, 140, 19–26.Google Scholar
  67. 67.
    Claus, H. (2004) Micron, 35, 93–96.PubMedGoogle Scholar
  68. 68.
    Morozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., and Yaropolov, A. I. (2007) Biochemistry (Moscow), 72, 1136–1150.Google Scholar
  69. 69.
    Lee, S.-K., George, S. D., Antholine, W. E., Hedman, B., Hodgson, K. O., and Solomon, E. I. (2002) J. Am. Chem. Soc., 124, 6180–6193.PubMedGoogle Scholar
  70. 70.
    Mayer, A. M., and Staples, R. C. (2002) Phytochemistry, 60, 551–565.PubMedGoogle Scholar
  71. 71.
    Riva, S. (2006) Trends Biotechnol., 24, 219–226.PubMedGoogle Scholar
  72. 72.
    Yaropolov, A. I., Skorobogat’ko, O. V., Vartanov, S. S., and Varfolomeyev, S. D. (1994) Appl. Biochem. Biotechnol., 49, 257–280.Google Scholar
  73. 73.
    Baldrian, P. (2004) Appl. Microbiol. Biotechnol., 63, 560–563.PubMedGoogle Scholar
  74. 74.
    Kurniawati, S., and Nicell, J. A. (2008) Bioresour. Technol., 99, 7825–7834.PubMedGoogle Scholar
  75. 75.
    Shin, K. S., and Lee, Y. J. (2000) Arch. Biochem. Biophys., 384, 109–115.PubMedGoogle Scholar
  76. 76.
    Shleev, S. V., Morozova, O. V., Nikitina, O. V., Gorshina, E. S., Rusinova, T. V., Serezhenkov, V. A., Burbaev, D. S., Gazaryan, I. G., and Yaropolov, A. I. (2004) Biochimie, 86, 693–703.PubMedGoogle Scholar
  77. 77.
    Shiba, T., Xiao, L., Miyakoshi, T., and Chen, C.-L. (2000) J. Mol. Catal. B: Enzym., 10, 605–615.Google Scholar
  78. 78.
    Bertrand, T., Jolivalt, C., Caminade, E., Joly, N., Mougin, C., and Briozzo, P. (2002) Acta Cryst., D58, 319–321.Google Scholar
  79. 79.
    Polyakov, K. M., Fedorova, T. V., Stepanova, E. V., Cherkashin, E. A., Kurzeev, S. A., Strokopytov, B. V., Lamzin, V. S., and Koroleva, O. V. (2009) Acta Cryst., D65, 611–617.Google Scholar
  80. 80.
    Morozova, O. V., Shumakovich, G. P., Shleev, S. V., and Yaropolov, A. I. (2007) Prikl. Biochim. Mikrobiol., 43, 583–597.Google Scholar
  81. 81.
    Solomon, E. I., Sundaram, U. M., and Machonkin, T. E. (1996) Chem. Rev., 96, 2563–2606.PubMedGoogle Scholar
  82. 82.
    Bento, I., Martins, L. O., Gato, L. G., Armenia, C. M., and Lindley, P. F. (2005) Dalton Transact., 21, 3507–3513.Google Scholar
  83. 83.
    Solomon, E. I., Chen, P., Metz, M., Lee, S. K., and Palmer, A. E. (2001) Angew. Chem. Int. Ed. Engl., 40, 4570–4590.PubMedGoogle Scholar
  84. 84.
    Bourbonnais, R., and Paice, M. G. (1990) FEBS, 267, 99–102.Google Scholar
  85. 85.
    Fabbrini, M., Galli, C., and Gentili, P. (2002) J. Mol. Catal. B: Enzym., 16, 231–240.Google Scholar
  86. 86.
    Shimizu, A., Kwon, J.-H., Sasaki, T., Satoh, T., Sakurai, N., Sakurai, T., Yamaguchi, S., and Samejima, T. (1999) Biochemistry, 38, 3034–3042.PubMedGoogle Scholar
  87. 87.
    Bankar, S. B., Bule, M. V., Singhal, R. S., and Ananthanarayan, L. (2009) Biotech. Adv., 27, 489–501.Google Scholar
  88. 88.
    Sztajer, H., Wang, W., Lunsdorf, H., Stocker, A., and Schmid, R. D. (1996) Appl. Microbiol. Biotechnol., 45, 600–606.PubMedGoogle Scholar
  89. 89.
    Kobayashi, S., and Makino, A. (2009) Chem. Rev., 109, 5288–5353.PubMedGoogle Scholar
  90. 90.
    Bouldin, R., Kokil, A., Ravichandran, S., Nagarajan, S., Kumar, J., Samuelson, L. A., Bruno, F. F., and Nagarajan, R. (2010) Green Polymer Chem. Biocatal. Biomater. ACS Symp. Ser., 1043, 315–341.Google Scholar
  91. 91.
    Walde, P., and Guo, Z. (2011) Soft Matter, 7, 316–331.Google Scholar
  92. 92.
    Xu, P., Singh, A., and Kaplan, D. (2006) Adv. Polym. Sci., 194, 69–94.Google Scholar
  93. 93.
    Hollmann, F., and Arends, I. W. C. E. (2012) Polymers, 4, 759–793.Google Scholar
  94. 94.
    McEldoon, J. P., and Dordick, J. S. (1996) Biotechnol. Prog., 12, 555–558.Google Scholar
  95. 95.
    Sakharov, I. Y., and Sakharova, I. V. (2002) Biochim. Biophys. Acta, 1598, 108–114.PubMedGoogle Scholar
  96. 96.
    Vasil’eva, I. S., Morozova, O. V., Shumakovich, G. P., Shleev, S. V., Sakharov, I. Y., and Yaropolov, A. I. (2007) Synth. Met., 157, 684–689.Google Scholar
  97. 97.
    USA Patent No. 5,420,237 (1995).Google Scholar
  98. 98.
    Cruz-Silva, R., Romero-Garcia, J., Angulo-Sanchez, J. L., Ledezma-Perez, A., Arias-Marin, E., Moggio, I., and Flores-Loyola, E. (2005) Eur. Polym. J., 41, 1129–1135.Google Scholar
  99. 99.
    Kausaite, A., Ramanaviciene, A., and Ramanavicius, A. (2009) Polymer, 50, 1846–1851.Google Scholar
  100. 100.
    Cui, X., Li, C. M., Zang, J., Zhou, Q., Gan, Y., Bao, H., Guo, J., Lee, V. S., and Moochhala, S. M. (2007) J. Phys. Chem. C, 111, 2025–2031.Google Scholar
  101. 101.
    Aizawa, M., Wang, L., Shinohara, H., and Ikariyama, Y. (1990) J. Biotechnol., 14, 301–309.PubMedGoogle Scholar
  102. 102.
    Samuelson, L. A., Anagnostopoulos, A., Alva, K. S., Kumar, J., and Tripathy, S. K. (1998) Macromolecules, 31, 4376–4378.Google Scholar
  103. 103.
    Liu, W., Kumar, J., Tripathy, S., Senecal, K. J., and Samuelson, L. (1999) J. Am. Chem. Soc., 121, 71–78.Google Scholar
  104. 104.
    Karamyshev, A. V., Shleev, S. V., Koroleva, O. V., Yaropolov, A. I., and Sakharov, I. Y. (2003) Enzyme Microb. Technol., 33, 556–564.Google Scholar
  105. 105.
    Mazhuto, Y. M., Karamyshev, A. V., Shleev, S. V., Sakharov, I. Y., and Yaropolov, A. I. (2005) Prikl. Biokhim. Mikrobiol., 41, 247–250.Google Scholar
  106. 106.
    Shumakovich, G. P., Vasil’eva, I. S., Morozova, O. V., Khomenkov, V. G., Staroverova, I. N., Budashov, I. A., Kurochkin, I. N., Boyeva, J. A., Sergeyev, V. G., and Yaropolov, A. I. (2010) J. Appl. Polym. Sci., 117, 1544–1550.Google Scholar
  107. 107.
    Shen, Y., Sun, J., Wu, J., and Zhon, Q. (2005) J. Appl. Polym. Sci., 96, 814–817.Google Scholar
  108. 108.
    Nagarajan, R., Liu, W., Kumar, J., Tripathy, S. K., Bruno, F. F., and Samuelson, L. A. (2001) Macromolecules, 34, 3921–3927.Google Scholar
  109. 109.
    Nickels, P., Dittmer, W. U., Beyer, S., Kotthaus, J. P., and Simmel, F. C. (2004) Nanotechnology, 15, 1521–1529.Google Scholar
  110. 110.
    Cruz-Silva, R., Amaro, E., Escamilla, A., Nicho, M. E., Sepulveda-Guzman, S., Arizmendi, L., Romero-Garcia, J., Castillon-Barraza, F. F., and Farias, M. H. (2008) J. Colloid Interface Sci., 328, 263–269.PubMedGoogle Scholar
  111. 111.
    Sahoo, S. K., Nagarajan, R., Roy, S., Samuelson, L. A., Kumar, J., and Cholli, A. L. (2004) Macromolecules, 37, 4130–4138.Google Scholar
  112. 112.
    Samuelson, L., Liu, W., Nagarajan, R., Kumar, J., Bruno, F. F., Cholli, A., and Tripathy, S. (2001) Synth. Met., 119, 271–272.Google Scholar
  113. 113.
    Streltsov, A. V., Shumakovich, G. P., Morozova, O. V., Gorbacheva, M. A., and Yaropolov, A. I. (2008) Appl. Biochem. Microb., 44, 264–270.Google Scholar
  114. 114.
    Rumbau, V., Pomposo, J. A., Alduncin, J. A., Grande, H., Mecerreyes, D., and Ochoteco, E. (2007) Enzyme Microb. Technol., 40, 1412–1421.Google Scholar
  115. 115.
    Guo, Z., Ruuegger, H., Kissner, R., Ishikawa, T., Willeke, M., and Walde, P. (2009) Langmuir, 25, 11390–11405.PubMedGoogle Scholar
  116. 116.
    Liu, W., Cholli, A. L., Nagarajan, R., Kumar, J., Tripathy, S., Bruno, F. F., and Samuelson, L. (1999) J. Am. Chem. Soc., 121, 11345–11355.Google Scholar
  117. 117.
    Cruz-Silva, R., Ruiz-Flores, C., Arizmendi, L., Romero-Garcia, J., Arias-Marin, E., Moggio, I., Castillon, F. F., and Farias, M. H. (2006) Polymer, 47, 1563–1568.Google Scholar
  118. 118.
    Caramyshev, A. V., Evtushenko, E. G., Ivanov, V. F., Barcelo, A. R., Roig, M. G., Shnyrov, V. L., van Huystee, R. B., Kurochkin, I. N., Vorobiev, A. Kh., and Sakharov, I. Y. (2005) Biomacromolecules, 6, 1360–1366.PubMedGoogle Scholar
  119. 119.
    Longoria, A. M., Hu, H., and Vazquez-Duhalt, R. (2010) Appl. Biochem. Biotech., 162, 927–934.Google Scholar
  120. 120.
    Roman, P., Cruz-Silva, R., and Vazquez-Duhalt, R. (2012) Synth. Met., 162, 794–799.Google Scholar
  121. 121.
    Streltsov, A. V., Morozova, O. V., Arkharova, N. A., Klechkovskaya, V. V., Staroverova, I. N., Shumakovich, G. P., and Yaropolov, A. I. (2009) J. Appl. Pol. Sci., 114, 928–934.Google Scholar
  122. 122.
    Jin, Z., Su, Y., and Duan, Y. (2001) Synth. Met., 122, 237–242.Google Scholar
  123. 123.
    Vasil’eva, I. S., Morozova, O. V., Shumakovich, G. P., and Yaropolov, A. I. (2009) Prikl. Biokhim. Mikrobiol., 45, 27–30.Google Scholar
  124. 124.
    Rumbau, V., Marcilla, R., Ochoteco, E., Pomposo, J. A., and Mecerreyes, D. (2006) Macromolecules, 39, 8547–8549.Google Scholar
  125. 125.
    Guo, H., Knobler, Ch. M., and Kaner, R. B. (1999) Synth. Met., 101, 44–47.Google Scholar
  126. 126.
    Moutet, J.-C., Saint-Aman, E., Tran-Van, F., Angibeaud, P., and Utille, J.-P. (1992) Adv. Mater., 4, 511–513.Google Scholar
  127. 127.
    Thiyagarajan, M., Samuelson, L. A., Kumar, J., and Cholli, A. L. (2003) J. Am. Chem. Soc., 125, 11502–11503.PubMedGoogle Scholar
  128. 128.
    Ashraf, S. A., Kane-Maguire, L. A. P., Majidi, M. R., Pyne, S. G., and Wallace, G. G. (1997) Polymer, 38, 2627–2631.Google Scholar
  129. 129.
    Kane-Maguire, L. A. P., MacDiarmid, A. G., Norris, I. D., Wallace, G. G., and Zheng, W. (1999) Synth. Met., 106, 171–176.Google Scholar
  130. 130.
    Zeifman, Y. S., Maiboroda, I. O., Grishchenko, Y. V., Morozova, O. V., Vasil’eva, I. S., Shumakovich, G. P., and Yaropolov, A. I. (2012) Prikl. Biokhim. Mikrobiol., 48, 169–174.PubMedGoogle Scholar
  131. 131.
    Tzou, K., and Gregory, R. V. (1992) Synth. Met., 47, 267–277.Google Scholar
  132. 132.
    Shumakovich, G., Streltsov, A., Gorshina, E., Rusinova, T., Kurova, V., Vasil’eva, I., Otrokhov, G., Morozova, O., and Yaropolov, A. (2011) J. Mol. Catal. B: Enzym., 69, 83–88.Google Scholar
  133. 133.
    Rumbau, V., Pomposo, J. A., Eleta, A., Rodriguez, J., Grande, H., Mecerreyes, D., and Ochoteco, E. (2007) Biomacromolecules, 8, 315–317.PubMedGoogle Scholar
  134. 134.
    Hawkins, S. L., and Ratcliffe, N. M. (2000) J. Mat. Chem., 10, 2057–2062.Google Scholar
  135. 135.
    Nagarajan, S., Kumar, J., Bruno, F. F., Samuelson, L. A., and Nagarajan, R. (2008) Macromolecules, 41, 3049–3052.Google Scholar
  136. 136.
    Shumakovich, G., Otrokhov, G., Vasil’eva, I., Pankratov, D., Morozova, O., and Yaropolov, A. (2012) J. Mol. Catal. B: Enzym., 81, 66–68.Google Scholar
  137. 137.
    Song, H.-K., Tayhas, G., and Palmore, R. (2005) J. Phys. Chem. B, 109, 19278–19287.PubMedGoogle Scholar
  138. 138.
    Kupriyanovich, Y. N., Sukhov, B. G., Medvedeva, S. A., Mikhaleva, A. I., Vakul’skaya, T. I., Myachina, G. F., and Trofimov, B. A. (2008) Mendel. Commun., 18, 56–58.Google Scholar
  139. 139.
    Shumakovich, G., Kurova, V., Vasil’eva, I., Pankratov, D., Otrokhov, G., Morozova, O., and Yaropolov, A. (2012) J. Mol. Catal. B: Enzym., 77, 105–110.Google Scholar
  140. 140.
    Riul, A., Jr., Malmegrim, R., Fonseca, F. J., and Mattoso, L. H. C. (2003) Biosens. Bioelect., 18, 1365–1369.Google Scholar
  141. 141.
    Wessling, B., and Posdorfer, J. (1999) Synth. Met., 102, 1400–1401.Google Scholar
  142. 142.
    Soto-Oviedo, M. A., Araujo, O. A., Faez, R., Rezende, M. C., and De Paoli, M.-A. (2006) Synth. Met., 156, 1249–1255.Google Scholar
  143. 143.
    Carpi, F., and De Rossi, D. (2006) Opt. Laser Technol., 38, 292–305.Google Scholar
  144. 144.
    Russian Federation Patent No. 2348455 of 10.10.2006.Google Scholar
  145. 145.
    Sheng, Q., and Zheng, J. (2009) Biosens. Bioelect., 24, 1621–1628.Google Scholar
  146. 146.
    Heider, G. H., Sasso, S. V., Huang, K., Yacynych, A. M., and Wieck, H. J. (1990) Anal. Chem., 62, 1106–1110.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • G. V. Otrokhov
    • 1
  • O. V. Morozova
    • 1
  • I. S. Vasil’eva
    • 1
  • G. P. Shumakovich
    • 1
  • E. A. Zaitseva
    • 2
  • M. E. Khlupova
    • 1
  • A. I. Yaropolov
    • 1
    Email author
  1. 1.A. N. Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Chemical FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations