Advertisement

Biochemistry (Moscow)

, Volume 78, Issue 13, pp 1490–1511 | Cite as

Mitochondrial production of reactive oxygen species

  • V. G. GrivennikovaEmail author
  • A. D. Vinogradov
Review

Abstract

Numerous biochemical studies are aimed at elucidating the sources and mechanisms of formation of reactive oxygen species (ROS) because they are involved in cellular, organ-, and tissue-specific physiology. Mitochondria along with other cellular organelles of eukaryotes contribute significantly to ROS formation and utilization. This review is a critical account of the mitochondrial ROS production and methods for their registration. The physiological and pathophysiological significance of the mitochondrially produced ROS are discussed.

Key words

oxidoreductases respiratory chain ROS production mitochondria 

Abbreviations

Amplex Red

10-acetyl-3,7-dihydrophenoxazine

DLDH

dihydrolipoamide dehydrogenase

DODH

dihydroorotate dehydrogenase

ETF

electron-transferring flavoprotein

GSSG and GSH

oxidized and reduced forms of glutathione, respectively

MAO

monoamine oxidase

mGPDH

mitochondrial α-glycerophosphate dehydrogenase

NOX

NAD(P)H oxidase

\(O_2^{\bar \cdot }\) and O2sd H

superoxide anion and its protonated form

·OH

hydroxyl radical

OGDHc

α-oxoglutarate dehydrogenase complex

PDHc

pyruvate dehydrogenase complex

ROS

reactive oxygen species

SMP

submitochondrial particles

SOD

superoxide dismutase

Δp

proton electrochemical potential difference

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haldane, J. S., and Priestley, J. G. (1935) Respiration, 2nd Edn., Oxford University Press.Google Scholar
  2. 2.
    Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P., and Fenn, W. O. (1954) Science, 119, 623–626.PubMedGoogle Scholar
  3. 3.
    Harman, D. (1956) J. Gerontol., 11, 298–300.PubMedGoogle Scholar
  4. 4.
    Jensen, P. K. (1966) Biochim. Biophys. Acta, 122, 157–166.PubMedGoogle Scholar
  5. 5.
    McCord, J. M., and Fridovich, I. (1969) J. Biol. Chem., 244, 6049–6055.PubMedGoogle Scholar
  6. 6.
    Keele, B. B., Jr., McCord, J. M., and Fridovich, I. (1970) J. Biol. Chem., 245, 6176–6181.PubMedGoogle Scholar
  7. 7.
    Loschen, G., Flohe, L., and Chance, B. (1971) FEBS Lett., 18, 261–264.PubMedGoogle Scholar
  8. 8.
    Harman, D. (1972) J. Am. Geriatr. Soc., 20, 145–147.PubMedGoogle Scholar
  9. 9.
    Boveris, A., Oshino, N., and Chance, B. (1972) Biochem. J., 128, 617–630.PubMedGoogle Scholar
  10. 10.
    Babior, B. M., Kipnes, R. S., and Curnutte, J. T. (1973) J. Clin. Invest., 52, 741–744.PubMedCentralPubMedGoogle Scholar
  11. 11.
    White, A. A., Crawford, K. M., Patt, C. S., and Lad, P. J. (1976) J. Biol. Chem., 251, 7304–7312.PubMedGoogle Scholar
  12. 12.
    Veal, E. A., Day, A. M., and Morgan, B. A. (2007) Mol. Cell, 26, 1–14.PubMedGoogle Scholar
  13. 13.
    Santos, C. X., Anilkumar, N., Zhang, M., Brewer, A. C., and Shah, A. M. (2011) Free Radic. Biol. Med., 50, 777–793.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Imlay, J. A. (2003) Annu. Rev. Microbiol., 57, 395–418.PubMedGoogle Scholar
  15. 15.
    Miller, A. F. (2012) FEBS Lett., 586, 585–595.PubMedGoogle Scholar
  16. 16.
    Chen, Q., Vazquez, E. J., Moghaddas, S., Hoppel, C. L., and Lesnefsky, E. J. (2003) J. Biol. Chem., 278, 36027–36031.PubMedGoogle Scholar
  17. 17.
    Turrens, J. F. (2003) J. Physiol., 15, 335–344.Google Scholar
  18. 18.
    Staniek, K., and Nohl, H. (2000) Biochim. Biophys. Acta, 1460, 268–275.PubMedGoogle Scholar
  19. 19.
    Brown, G. C., and Borutaite, V. (2012) Mitochondrion, 12, 1–4.PubMedGoogle Scholar
  20. 20.
    George, P. (1965) The Fitness of Oxygen (King, T. E., Mason, H. S., and Morrison, M., eds.) John Wiley & Sons, Inc., New York-London-Sidney, pp. 3–36.Google Scholar
  21. 21.
    Paulus, A., Rossius, S. G., Dijk, M., and de Vries, S. (2012) J. Biol. Chem., 287, 8830–8888.PubMedGoogle Scholar
  22. 22.
    Knowles, P. F., Gibson, J. F., Pick, F. M., and Bray, R. C. (1969) Biochem. J., 111, 53–58.PubMedGoogle Scholar
  23. 23.
    Fridovich, I. (1974) Superoxide Dismutases. Adv. Enzymol., 41, 35–97.Google Scholar
  24. 24.
    Clark, W. M. (1960) Oxidation-Reduction Potential of Organic Systems, The Williams & Wilkins Co., Baltimore.Google Scholar
  25. 25.
    Sawyer, D. T., and Nanni, E. J., Jr. (1981) in Oxygen and Oxy-Radicals in Chemistry and Biology (Rodgers, A. J., and Powers, E. L., eds.) Academic Press, New York-London-Sydney-San Francisco, pp. 15–44.Google Scholar
  26. 26.
    Wood, P. M. (1988) Biochem. J., 253, 287–289.PubMedGoogle Scholar
  27. 27.
    Massey, V. (1994) J. Biol. Chem., 269, 22459–22462.PubMedGoogle Scholar
  28. 28.
    Bakeeva, L. E., Chentsov, Y. S., Jasaitis, A. A., and Skulachev, V. P. (1972) Biochim. Biophys. Acta, 275, 319–332.PubMedGoogle Scholar
  29. 29.
    Amchenkova, A. A., Bakeeva, L. E., Chentsov, Y. S., Skulachev, V. P., and Zorov, D. B. (1988) J. Cell. Biol., 107, 481–495.PubMedGoogle Scholar
  30. 30.
    Bing, R. J., Siegel, A., Vitale, A., Balboni, F., Sparks, E., Taeschler, M., Klapper, M., and Edwards, S. (1953) Am. J. Med., 15, 284–296.PubMedGoogle Scholar
  31. 31.
    Bing, R. J., Siegel, A., Ungar, I., and Gilbert, M. (1954) Am. J. Med., 16, 504–515.PubMedGoogle Scholar
  32. 32.
    Chance, B., and Williams, G. R. (1955) J. Biol. Chem., 217, 409–427.PubMedGoogle Scholar
  33. 33.
    Takahashi, M. A., and Asada, K. (1983) Arch. Biochem. Biophys., 226, 558–566.PubMedGoogle Scholar
  34. 34.
    Gus’kova, R. A., Ivanov, I. I., Kol’tover, V. K., Akhobadze, V. V., and Rubin, A. B. (1984) Biochim. Biophys. Acta, 778, 579–585.PubMedGoogle Scholar
  35. 35.
    Grivennikova, V. G., Kareyeva, A. V., and Vinogradov, A. D. (2010) Biochim. Biophys. Acta, 1797, 939–944.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Grivennikova, V. G., Kapustin, A. N., and Vinogradov, A. D. (2001) J. Biol. Chem., 276, 9038–9044.PubMedGoogle Scholar
  37. 37.
    Gostimskaya, I. S., Grivennikova, V. G., Zharova, T. V., Bakeeva, L. E., and Vinogradov, A. D. (2003) Anal. Biochem., 313, 46–52.PubMedGoogle Scholar
  38. 38.
    Kotlyar, A. B., and Vinogradov, A. D. (1990) Biochim. Biophys. Acta, 1019, 151–158.PubMedGoogle Scholar
  39. 39.
    Tarpey, M. M., and Fridovich, I. (2001) Circ. Res., 89, 224–236.PubMedGoogle Scholar
  40. 40.
    Miwa, S., and Brand, M. D. (2005) Biochim. Biophys. Acta, 1709, 214–219.PubMedGoogle Scholar
  41. 41.
    Chance, B., Sies, H., and Boveris, A. (1979) Physiol. Rev., 59, 527–605.PubMedGoogle Scholar
  42. 42.
    Zhou, M., Diwu, Z., Panchuk-Voloshina, N., and Haugland, R. P. (1997) Anal. Biochem., 253, 162–168.PubMedGoogle Scholar
  43. 43.
    Boveris, A., and Chance, B. (1973) Biochem. J., 134, 707–716.PubMedGoogle Scholar
  44. 44.
    Tahara, E. B., Navarete, F. D., and Kowaltowski, A. J. (2009) Free Radic. Biol. Med., 46, 1283–1297.PubMedGoogle Scholar
  45. 45.
    Lambert, A. J., Boysen, H. M., Buckingham, J. A., Yang, T., Podlutsky, A., Austad, S. N., Kunz, T. H., Buffenstein, R., and Brand, M. D. (2007) Aging Cell, 6, 607–168.PubMedGoogle Scholar
  46. 46.
    St-Pierre, J., Buckingham, J. A., Roebuck, S. J., and Brand, M. D. (2002) J. Biol. Chem., 277, 44784–44790.PubMedGoogle Scholar
  47. 47.
    Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) FEBS Lett., 416, 15–18.PubMedGoogle Scholar
  48. 48.
    Chance, B., and Williams, G. R. (1956) Adv. Enzymol. Relat. Subj. Biochem., 17, 65–134.PubMedGoogle Scholar
  49. 49.
    Hinkle, P. C., Butow, R. A., Racker, E., and Chance, B. (1967) J. Biol. Chem., 242, 5169–5173.PubMedGoogle Scholar
  50. 50.
    Takeshige, K., and Minakami, S. (1979) Biochem. J., 180, 129–135.PubMedGoogle Scholar
  51. 51.
    Turrens, J. F., and Boveris, A. (1980) Biochem. J., 191, 421–427.PubMedGoogle Scholar
  52. 52.
    Krishnamoorthy, G., and Hinkle, P. C. (1988) J. Biol. Chem., 263, 17566–17575.PubMedGoogle Scholar
  53. 53.
    Ksenzenko, M., Konstantinov, A. A., Khomutov, G. B., Tikhonov, A. N., and Ruuge, E. K. (1983) FEBS Lett., 155, 19–24.PubMedGoogle Scholar
  54. 54.
    Sun, J., and Trumpower, B. L. (2003) Arch. Biochem. Biophys., 419, 198–206.PubMedGoogle Scholar
  55. 55.
    Loschen, G., Azzi, A., Richter, C., and Flohe, L. (1974) FEBS Lett., 42, 68–72.PubMedGoogle Scholar
  56. 56.
    Brandt, U. (2006) Annu. Rev. Biochem., 75, 69–92.PubMedGoogle Scholar
  57. 57.
    Cecchini, G. (2003) Annu. Rev. Biochem., 72, 77–109.PubMedGoogle Scholar
  58. 58.
    Hunte, C., Solmaz, S., Palsdottir, H., and Wenz, T. (2008) Results Probl. Cell Differ., 45, 253–278.PubMedGoogle Scholar
  59. 59.
    Carothers, D. J., Pons, G., and Patel, M. S. (1989) Arch. Biochem. Biophys., 268, 409–425.PubMedGoogle Scholar
  60. 60.
    Bedard, K., and Krause, K. H. (2007) Physiol. Rev., 87, 245–313.PubMedGoogle Scholar
  61. 61.
    Edmondson, D. E., Binda, C., and Mattevi, A. (2004) Neurotoxicology, 25, 63–72.PubMedGoogle Scholar
  62. 62.
    Watmough, N. J., and Frerman, F. E. (2004) Biochim. Biophys. Acta, 1797, 1910–1916.Google Scholar
  63. 63.
    Mracek, T., Drahota, Z., and Houstek, J. (2013) Biochim. Biophys. Acta, 1827, 401–410.PubMedGoogle Scholar
  64. 64.
    Evans, D. R., and Guy, H. I. (2004) J. Biol. Chem., 279, 33035–33038.PubMedGoogle Scholar
  65. 65.
    Miller, R. W., Kerr, C. T., and Curry, J. R. (1968) Can. J. Biochem., 46, 1099–1106.PubMedGoogle Scholar
  66. 66.
    Kennedy, J. (1973) Arch. Biochem. Biophys., 157, 369–373.PubMedGoogle Scholar
  67. 67.
    Chen, J. J., and Jones, M. E. (1976) Arch. Biochem. Biophys., 176, 82–90.PubMedGoogle Scholar
  68. 68.
    Angermuller, S., and Loffler, M. (1995) Histochem. Cell. Biol., 103, 287–292.PubMedGoogle Scholar
  69. 69.
    Loffler, M., Becker, C., Wegerle, E., and Schuster, G. (1996) Histochem. Cell. Biol., 105, 119–128.PubMedGoogle Scholar
  70. 70.
    Rawls, J., Knecht, W., Diekert, K., Lill, R., and Loffler, M. (2000) Eur. J. Biochem., 267, 2079–2087.PubMedGoogle Scholar
  71. 71.
    Norager, S., Jensen, K. F., Bjornberg, O., and Larsen, S. (2002) Structure, 10, 1211–1223.PubMedGoogle Scholar
  72. 72.
    Forman, H. J., and Kennedy, J. (1975) J. Biol. Chem., 250, 4322–4326.PubMedGoogle Scholar
  73. 73.
    Forman, H. J., and Kennedy, J. (1976) Arch. Biochem. Biophys., 173, 219–224.PubMedGoogle Scholar
  74. 74.
    Hail, N., Jr., Chen, P., Kepa, J. J., Bushman, L. R., and Shearn, C. (2010) Free Radic. Biol. Med., 49, 109–116.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Klingenberg, M. (1970) Eur. J. Biochem., 13, 247–252.PubMedGoogle Scholar
  76. 76.
    Mracek, T., Pecinova, A., Vrbacky, M., Drahota, Z., and Houstek, J. (2009) Arch. Biochem. Biophys., 481, 30–36.PubMedGoogle Scholar
  77. 77.
    Orr, A. L., Quinlan, C. L., Perevoshchikova, I. V., and Brand, M. D. (2012) J. Biol. Chem., 287, 42921–42935.PubMedGoogle Scholar
  78. 78.
    Dummler, K., Muller, S., and Seitz, H. J. (1996) Biochem. J., 317, 913–918.PubMedGoogle Scholar
  79. 79.
    Brown, L. J., MacDonald, M. J., Lehn, D. A., and Moran, S. M. (1994) J. Biol. Chem., 269, 14363–14366.PubMedGoogle Scholar
  80. 80.
    Yeh, J. I., Chinte, U., and Du, S. (2008) Proc. Natl. Acad. Sci. USA, 105, 3280–3285.PubMedGoogle Scholar
  81. 81.
    Drahota, Z., Chowdhury, S. K., Floryk, D., Mracek, T., Wilhelm, J., Rauchova, H., Lenaz, G., and Houstek, J. (2002) J. Bioenerg. Biomembr., 34, 105–113.PubMedGoogle Scholar
  82. 82.
    Chen, F., Haigh, S., Barman, S., and Fulton, D. J. (2012) Front. Physiol., 3, 1–12.Google Scholar
  83. 83.
    Takac, I., Schroder, K., Zhang, L., Lardy, B., Anilkumar, N., Lambeth, J. D., Shah, A. M., Morel, F., and Brandes, R. P. (2011) J. Biol. Chem., 286, 13304–13313.PubMedGoogle Scholar
  84. 84.
    Geiszt, M., Kopp, J. B., Varnai, P., and Leto, T. L. (2000) Proc. Natl. Acad. Sci. USA, 97, 8010–8014.PubMedGoogle Scholar
  85. 85.
    Kuroda, J., Ago, T., Matsushima, S., Zhai, P., Schneider, M. D., and Sadoshima, J. (2010) Proc. Natl. Acad. Sci. USA, 107, 15565–15570.PubMedGoogle Scholar
  86. 86.
    Ago, T., Kuroda, J., Pain, J., Fu, C., Li, H., and Sadoshima, J. (2010) Circ. Res., 106, 1253–1264.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Maejima, Y., Kuroda, J., Matsushima, S., Ago, T., and Sadoshima, J. (2011) J. Mol. Cell. Cardiol., 50, 408–416.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Schnaitman, C., Erwin, V. G., and Greenawalt, J. W. (1967) J. Cell. Biol., 32, 719–735.PubMedGoogle Scholar
  89. 89.
    Binda, C., Newton-Vinson, P., Hubalek, F., Edmondson, D. E., and Mattevi, A. (2002) Nat. Struct. Biol., 9, 22–26.PubMedGoogle Scholar
  90. 90.
    De Colibus, L., Li, M., Binda, C., Lustig, A., Edmondson, D. E., and Mattevi, A. (2005) Proc. Natl. Acad. Sci. USA, 102, 12684–12689.PubMedGoogle Scholar
  91. 91.
    Edmondson, D. E., Binda, C., Wang, J., Upadhyay, A. K., and Mattevi, A. (2009) Biochemistry, 48, 4220–4230.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Sivasubramaniam, S. D., Finch, C. C., Rodriguez, M. J., Mahy, N., and Billett, E. E. (2003) Cell. Tissue Res., 313, 291–300.PubMedGoogle Scholar
  93. 93.
    Kaludercic, N., Carpi, A., Menabo, R., Di Lisa, F., and Paolocci, N. (2011) Biochim. Biophys. Acta, 1813, 1323–1332.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Bianchi, P., Kunduzova, O., Masini, E., Cambon, C., Bani, D., Raimondi, L., Seguelas, M. H., Nistri, S., Colucci, W., Leducq, N., and Parini, A. (2005) Circulation, 112, 3297–3305.PubMedGoogle Scholar
  95. 95.
    Maurel, A., Hernandez, C., Kunduzova, O., Bompart, G., Cambon, C., Parini, A., and Frances, B. (2003) Am. J. Physiol. Heart Circ. Physiol., 284, H1460–H1467.PubMedGoogle Scholar
  96. 96.
    Crane, F. L., and Beinert, H. (1956) J. Biol. Chem., 218, 717–731.PubMedGoogle Scholar
  97. 97.
    Kim, J. J., and Miura, R. (2004) Eur. J. Biochem., 271, 483–493.PubMedGoogle Scholar
  98. 98.
    Roberts, D. L., Frerman, F. E., and Kim, J.-J. (1996) Proc. Natl. Acad. Sci. USA, 93, 14355–14360.PubMedGoogle Scholar
  99. 99.
    Ramsay, R. R., Steenkamp, D. J., and Husain, M. (1987) Biochem. J., 241, 883–892.PubMedGoogle Scholar
  100. 100.
    Ruzicka, F. J., and Beinert, H. (1977) J. Biol. Chem., 252, 8440–8445.PubMedGoogle Scholar
  101. 101.
    Zhang, J., Frerman, F. E., and Kim, J.-J. (2006) Proc. Natl. Acad. Sci. USA, 103, 16212–16217.PubMedGoogle Scholar
  102. 102.
    Seifert, E. L., Estey, C., Xuan, J. Y., and Harper, M. E. (2010) J. Biol. Chem., 285, 5748–5758.PubMedGoogle Scholar
  103. 103.
    Schonfeld, P., and Wojtczak, L. (2012) Biochim. Biophys. Acta, 1817, 410–418.PubMedGoogle Scholar
  104. 104.
    Rosca, M. G., Vazquez, E. J., Chen, Q., Kerner, J., Kern, T. S., and Hoppel, C. L. (2012) Diabetes, 61, 2074–2083.PubMedGoogle Scholar
  105. 105.
    Wang, R., and Thorpe, C. (1991) Biochemistry, 30, 7895–7901.PubMedGoogle Scholar
  106. 106.
    Carroll, J., Fearnley, I. M., Skehel, J. M., Shannon, R. J., Hirst, J., and Walker, J. E. (2006) J. Biol. Chem., 281, 32724–32727.PubMedGoogle Scholar
  107. 107.
    Balsa, E., Marco, R., Perales-Clemente, E., Szklarczyk, R., Calvo, E., Landazuri, M. O., and Enriquez, J. A. (2012) Cell Metab., 16, 378–386.PubMedGoogle Scholar
  108. 108.
    Morgner, N., Zickermann, V., Kerscher, S., Wittig, I., Abdrakhmanova, A., Barth, H. D., Brutschy, B., and Brandt, U. (2008) Biochim. Biophys. Acta, 1777, 1384–1391.PubMedGoogle Scholar
  109. 109.
    Drose, S., Krack, S., Sokolova, L., Zwicker, K., Barth, H. D., Morgner, N., Heide, H., Steger, M., Nubel, E., Zickermann, V., Kerscher, S., Brutschy, B., Radermacher, M., and Brandt, U. (2011) PLoS Biol., 9, e1001128, 1–11.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Walker, J. E. (1992) Q. Rev. Biophys., 25, 253–324.PubMedGoogle Scholar
  111. 111.
    Yagi, T., and Matsuno-Yagi, A. (2003) Biochemistry, 42, 2266–2274.PubMedGoogle Scholar
  112. 112.
    Rao, N. A., Felton, S. P., Huennekens, F. M., and Mackler, B. (1963) J. Biol. Chem., 238, 449–455.PubMedGoogle Scholar
  113. 113.
    Ohnishi, T., Sled, V. D., Yano, T., Yagi, T., Burbaev, D. S., and Vinogradov, A. D. (1998) Biochim. Biophys. Acta, 1365, 301–308.PubMedGoogle Scholar
  114. 114.
    Sled, V. D., Friedrich, T., Leif, H., Weiss, H., Meinhardt, S. W., Fukumori, Y., Calhoun, M. W., Gennis, R. B., and Ohnishi, T. (1993) J. Bioenerg. Biomembr., 25, 347–356.PubMedGoogle Scholar
  115. 115.
    Ohnishi, T., and Salerno, J. C. (1982) Iron-Sulfur Proteins, Vol. IV (Spiro, T., ed.) Wiley Publishing Co. Inc., N. Y., pp. 285–327.Google Scholar
  116. 116.
    Beinert, H., and Albracht, S. P. J. (1982) Biochim. Biophys. Acta, 683, 245–277.PubMedGoogle Scholar
  117. 117.
    Vinogradov, A. D., Sled, V. D., Burbaev, D. S., Grivennikova, V. G., Moroz, I. A., and Ohnishi, T. (1995) FEBS Lett., 370, 83–87.PubMedGoogle Scholar
  118. 118.
    Sazanov, L. A. (2007) Biochemistry, 46, 2275–2288.PubMedGoogle Scholar
  119. 119.
    Efremov, R. G., Baradaran, R., and Sazanov, L. A. (2010) Nature, 465, 441–445.PubMedGoogle Scholar
  120. 120.
    Clason, T., Ruiz, T., Schagger, H., Peng, G., Zickermann, V., Brandt, U., Michel, H., and Radermacher, M. (2010) J. Struct. Biol., 169, 81–88.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Sazanov, L. A., and Hinchliffe, P. (2006) Science, 311, 1430–1436.PubMedGoogle Scholar
  122. 122.
    Efremov, R. G., and Sazanov, L. A. (2011) Nature, 476, 414–420.PubMedGoogle Scholar
  123. 123.
    Hunte, C., Zickermann, V., and Brandt, U. (2010) Science, 329, 448–451.PubMedGoogle Scholar
  124. 124.
    Ohnishi, T. (1975) Biochim. Biophys. Acta, 387, 475–490.PubMedGoogle Scholar
  125. 125.
    Mathiesen, C., and Hagerhall, C. (2002) Biochim. Biophys. Acta, 1556, 121–132.PubMedGoogle Scholar
  126. 126.
    Baradaran, R., Berrisford, J. M., Minhas, G. S., and Sazanov, L. A. (2013) Nature, 494, 443–448.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Grivennikova, V. G., and Vinogradov, A. D. (2013) Biochim. Biophys. Acta, 1827, 446–454.PubMedGoogle Scholar
  128. 128.
    Votyakova, T. V., and Reynolds, I. J. (2001) J. Neurochem., 79, 266–277.PubMedGoogle Scholar
  129. 129.
    Grivennikova, V. G., and Vinogradov, A. D. (2006) Biochim. Biophys. Acta, 1757, 553–561.PubMedGoogle Scholar
  130. 130.
    Kang, D., Narabayashi, H., Sata, T., and Takeshige, K. (1983) J. Biochem., 94, 1301–1306.PubMedGoogle Scholar
  131. 131.
    Kussmaul, L., and Hirst, J. (2006) Proc. Natl. Acad. Sci. USA, 103, 7607–7612.PubMedGoogle Scholar
  132. 132.
    Esterhazy, D., King, M. S., Yakovlev, G., and Hirst, J. (2008) Biochemistry, 47, 3964–3971.PubMedGoogle Scholar
  133. 133.
    Pepelina, T. Y., Chertkova, R. V., Ostroverkhova, T. V., Dolgikh, D. A., Kirpichnikov, M. P., Grivennikova, V. G., and Vinogradov, A. D. (2009) Biochemistry (Moscow), 74, 625–632.Google Scholar
  134. 134.
    Grivennikova, V. G., Ushakova, A. V., Cecchini, G., and Vinogradov, A. D. (2003) FEBS Lett., 549, 39–42.PubMedGoogle Scholar
  135. 135.
    Vinogradov, A. D. (2008) Biochim. Biophys. Acta, 1777, 729–734.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Kotlyar, A. B., Karliner, J. S., and Cecchini, G. (2005) FEBS Lett., 579, 4861–4866.PubMedGoogle Scholar
  137. 137.
    Grivennikova, V. G., Kotlyar, A. B., Karliner, J. S., Cecchini, G., and Vinogradov, A. D. (2007) Biochemistry, 46, 10971–10978.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Zharova, T. V., and Vinogradov, A. D. (1997) Biochim. Biophys. Acta, 1320, 256–264.PubMedGoogle Scholar
  139. 139.
    Ragan, C. I., and Bloxham, D. P. (1977) Biochem. J., 163, 605–615.PubMedGoogle Scholar
  140. 140.
    Majander, A., Finel, M., and Wikstrom, M. (1994) J. Biol. Chem., 269, 21037–21042.PubMedGoogle Scholar
  141. 141.
    Degli Esposti, M. (1998) Biochim. Biophys. Acta, 1364, 222–235.PubMedGoogle Scholar
  142. 142.
    Miyoshi, H. (1998) Biochim. Biophys. Acta, 1364, 236–244.PubMedGoogle Scholar
  143. 143.
    Okun, J. G., Lummen, P., and Brandt, U. (1999) J. Biol. Chem., 274, 2625–2630.PubMedGoogle Scholar
  144. 144.
    Kushnareva, Y., Murphy, A. N., and Andreyev, A. (2002) Biochem. J., 368, 545–553.PubMedGoogle Scholar
  145. 145.
    Kudin, A. P., Bimpong-Buta, N. Y., Vielhaber, S., Elger, C. E., and Kunz, W. S. (2004) J. Biol. Chem., 279, 4127–4135.PubMedGoogle Scholar
  146. 146.
    Kareyeva, A. V., Grivennikova, V. G., and Vinogradov, A. D. (2012) Biochim. Biophys. Acta, 1817, 1879–1885.PubMedGoogle Scholar
  147. 147.
    Sled, V. D., Rudnitzky, N. I., Hatefi, Y., and Ohnishi, T. (1994) Biochemistry, 33, 10069–10075.PubMedGoogle Scholar
  148. 148.
    Turrens, J. F., Freeman, B. A., Levitt, J. G., and Crapo, J. D. (1982) Arch. Biochem. Biophys., 217, 401–410.PubMedGoogle Scholar
  149. 149.
    Vinogradov, A. D., and Grivennikova, V. G. (2005) Biochemistry (Moscow), 70, 120–127.Google Scholar
  150. 150.
    Ohnishi, T. (1998) Biochim. Biophys. Acta, 1364, 186–206.PubMedGoogle Scholar
  151. 151.
    Galkin, A., and Brandt, U. (2005) J. Biol. Chem., 280, 30129–30135.PubMedGoogle Scholar
  152. 152.
    Treberg, J. R., Quinlan, C. L., and Brand, M. D. (2011) J. Biol. Chem., 286, 27103–27110.PubMedGoogle Scholar
  153. 153.
    Ohnishi, S. T., Shinzawa-Itoh, K., Ohta, K., Yoshikawa, S., and Ohnishi, T. (2010) Biochim. Biophys. Acta, 1797, 1901–1909.PubMedGoogle Scholar
  154. 154.
    Chance B., and Hollunger, G. (1961) J. Biol. Chem., 236, 1555–1561.PubMedGoogle Scholar
  155. 155.
    Schofield, C. J., and Zhang, Z. (1999) Curr. Opin. Struct. Biol., 9, 722–731.PubMedGoogle Scholar
  156. 156.
    Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O’Rourke, J., Mole, D. R., Mukherji, M., Metzen, E., Wilson, M. I., Dhanda, A., Tian, Y. M., Masson, N., Hamilton, D. L., Jaakkola, P., Barstead, R., Hodgkin, J., Maxwell, P. H., Pugh, C. W., Schofield, C. J., and Ratcliffe, P. J. (2001) Cell, 107, 43–54.PubMedGoogle Scholar
  157. 157.
    Nguyen, E., and Picklo, M. J. Sr. (2003) Biochim. Biophys. Acta, 1637, 107–112.PubMedGoogle Scholar
  158. 158.
    Maklashina, E. O., Sled, V. D., and Vinogradov, A. D. (1994) Biochemistry (Moscow), 59, 707–713.Google Scholar
  159. 159.
    Maklashina, E. O., and Vinogradov, A. D. (1994) Biochemistry (Moscow), 59, 1221–1226.Google Scholar
  160. 160.
    Vinogradov, A. D. (1998) Biochim. Biophys. Acta, 1364, 169–185.PubMedGoogle Scholar
  161. 161.
    Vinogradov, A. D., and Grivennikova, V. G. (2001) IUBMB Life, 52, 129–134.PubMedGoogle Scholar
  162. 162.
    Maklashina, E. O., Sher, Y., Zhou, H.-Z., Gray, M. O., Karliner, J. S., and Cecchini, G. (2002) Biochim. Biophys. Acta, 1556, 6–12.PubMedGoogle Scholar
  163. 163.
    Loskovich, M. V., Grivennikova, V. G., Cecchini, G., and Vinogradov, A. D. (2005) Biochem. J., 387, 677–683.PubMedGoogle Scholar
  164. 164.
    Kotlyar, A. B., Sled, V. D., and Vinogradov, A. D. (1992) Biochim. Biophys. Acta, 1098, 144–150.PubMedGoogle Scholar
  165. 165.
    Kalashnikov, D. S., Grivennikova, V. G., and Vinogradov, A. D. (2011) Biochemistry (Moscow), 76, 968–975.Google Scholar
  166. 166.
    Galkin, A., Meyer, B., Wittig, I., Karas, M., Schagger, H., Vinogradov, A., and Brandt, U. (2008) J. Biol. Chem., 283, 20907–20913.PubMedGoogle Scholar
  167. 167.
    Gavrikova, E. V., and Vinogradov, A. D. (1999) FEBS Lett., 455, 36–40.PubMedGoogle Scholar
  168. 168.
    Gostimskaya, I. S., Cecchini, G., and Vinogradov, A. D. (2006) Biochim. Biophys. Acta, 1757, 1155–1161.PubMedCentralPubMedGoogle Scholar
  169. 169.
    Galkin, A., and Moncada, S. (2007) J. Biol. Chem., 282, 37448–37453.PubMedGoogle Scholar
  170. 170.
    Chouchani, E. T., Methner, C., Nadtochiy, S. M., Logan, A., Pell, V. R., Ding, S., James, A. M., Cocheme, H. M., Reinhold, J., Lilley, K. S., Partridge, L., Fearnley, I. M., Robinson, A. J., Hartley, R. C., Smith, R. A., Krieg, T., Brookes, P. S., and Murphy, M. P. (2013) Nat. Med., 19, 753–759.PubMedGoogle Scholar
  171. 171.
    Yankovskaya, V., Horsefield, R., Tornroth, S., Luna-Chavez, C., Miyoshi, H., Leger, C., Byrne, B., Cecchini, G., and Iwata, S. (2003) Science, 299, 700–704.PubMedGoogle Scholar
  172. 172.
    Zhang, L., Yu, L., and Yu, C. A. (1998) J. Biol. Chem., 273, 33972–33976.PubMedGoogle Scholar
  173. 173.
    Messner, K. R., and Imlay, J. A. (2002) J. Biol. Chem., 277, 42563–42571.PubMedGoogle Scholar
  174. 174.
    Quinlan, C. L., Orr, A. L., Perevoshchikova, I. V., Treberg, J. R., Ackrell, B. A., and Brand, M. D. (2012) J. Biol. Chem., 287, 27255–27264.PubMedGoogle Scholar
  175. 175.
    Moreno-Sanchez, R., Hernandez-Esquivel, L., Rivero-Segura, N. A., Marin-Hernandez, A., Neuzil, J., Ralph, S. J., and Rodriguez-Enriquez, S. (2013) FEBS J., 280, 927–938.PubMedGoogle Scholar
  176. 176.
    Berry, E. A., Huang, L. S., Saechao, L. K., Pon, N. G., Valkova-Valchanova, M., and Daldal, F. (2004) Photosynth. Res., 81, 251–275.PubMedGoogle Scholar
  177. 177.
    Kleinschroth, T., Castellani, M., Trinh, C. H., Morgner, N., Brutschy, B., Ludwig, B., and Hunte, C. (2011) Biochim. Biophys. Acta, 1807, 1606–1615.PubMedGoogle Scholar
  178. 178.
    Xia, D., Yu, C. A., Kim, H., Xia, J. Z., Kachurin, A. M., Zhang, L., Yu, L., and Deisenhofer, J. (1997) Science, 277, 60–66.PubMedGoogle Scholar
  179. 179.
    Zhang, Z., Huang, L., Shulmeister, V. M., Chi, Y. I., Kim, K. K., Hung, L. W., Crofts, A. R., Berry, E. A., and Kim, S. H. (1998) Nature, 392, 677–684.PubMedGoogle Scholar
  180. 180.
    Iwata, S., Lee, J. W., Okada, K., Lee, J. K., Iwata, M., Rasmussen, B., Link, T. A., Ramaswamy, S., and Jap, B. K. (1998) Science, 281, 64–71.PubMedGoogle Scholar
  181. 181.
    Lange, C., and Hunte, C. (2002) Proc. Natl. Acad. Sci. USA, 99, 2800–2805.PubMedGoogle Scholar
  182. 182.
    Hunte, C., Palsdottir, H., and Trumpower, B. L. (2003) FEBS Lett., 545, 39–46.PubMedGoogle Scholar
  183. 183.
    Mitchell, P. (1975) FEBS Lett., 56, 1–6.PubMedGoogle Scholar
  184. 184.
    Mitchell, P. (1975) FEBS Lett., 59, 137–139.PubMedGoogle Scholar
  185. 185.
    Drose, S., and Brandt, U. (2012) Adv. Exp. Med. Biol., 748, 145–169.PubMedGoogle Scholar
  186. 186.
    Crofts, A. R. (2004) Biochim. Biophys. Acta, 1655, 77–92.PubMedGoogle Scholar
  187. 187.
    Brandt, U., and Trumpower, B. (1994) Crit. Rev. Biochem. Mol. Biol., 29, 165–197.PubMedGoogle Scholar
  188. 188.
    Trumpower, B. L. (2002) Biochim. Biophys. Acta, 1555, 166–173.PubMedGoogle Scholar
  189. 189.
    Osyczka, A., Moser, C. C., Daldal, F., and Dutton, P. L. (2004) Nature, 427, 607–612.PubMedGoogle Scholar
  190. 190.
    Osyczka, A., Moser, C. C., and Dutton, P. L. (2005) Trends Biochem. Sci., 30, 176–182.PubMedGoogle Scholar
  191. 191.
    Zhu, J., Egawa, T., Yeh, S. R., Yu, L., and Yu, C. A. (2007) Proc. Natl. Acad. Sci. USA, 104, 4864–4869.PubMedGoogle Scholar
  192. 192.
    Brandt, U. (1998) Biochim. Biophys. Acta, 1365, 261–268.PubMedGoogle Scholar
  193. 193.
    Covian, R., and Trumpower, B. L. (2008) Biochim. Biophys. Acta, 1777, 1044–1052.PubMedCentralPubMedGoogle Scholar
  194. 194.
    Covian, R., and Trumpower, B. L. (2008) Biochim. Biophys. Acta, 1777, 1079–1091.PubMedCentralPubMedGoogle Scholar
  195. 195.
    Castellani, M., Covian, R., Kleinschroth, T., Anderka, O., Ludwig, B., and Trumpower, B. L. (2010) J. Biol. Chem., 285, 502–510.PubMedGoogle Scholar
  196. 196.
    Bleier, L., and Drose, S. (2013) Biochim. Biophys. Acta, http://dx.doi.org/10.1016/j.bbabio.2012.12.002.Google Scholar
  197. 197.
    Lanciano, P., Khalfaoui-Hassani, B., Selamoglu, N., Ghelli, A., Rugolo, M., and Daldal, F. (2013) Biochim. Biophys. Acta, http://dx.doi.org/10.1016/j.bbabio.2013.03.009.Google Scholar
  198. 198.
    Yin, Y., Yang, S., Yu, L., and Yu, C. A. (2010) J. Biol. Chem., 285, 17038–17045.PubMedGoogle Scholar
  199. 199.
    Borek, A., Sarewicz, M., and Osyczka, A. (2008) Biochemistry, 47, 12365–12370.PubMedGoogle Scholar
  200. 200.
    Sarewicz, M., Borek, A., Cieluch, E., Swierczek, M., and Osyczka, A. (2010) Biochim. Biophys. Acta, 1797, 1820–1827.PubMedCentralPubMedGoogle Scholar
  201. 201.
    Rottenberg, H., Covian, R., and Trumpower, B. L. (2009) J. Biol. Chem., 284, 19203–19210.PubMedGoogle Scholar
  202. 202.
    Drose, S., and Brandt, U. (2008) J. Biol. Chem., 283, 21649–21654.PubMedGoogle Scholar
  203. 203.
    Zhou, F., Yin, Y., Su, T., Yu, L., and Yu, C. A. (2013) Biochim. Biophys. Acta, 1817, 2103–2109.Google Scholar
  204. 204.
    Muller, F. L., Liu, Y., and Van Remmen, H. (2004) J. Biol. Chem., 279, 49064–49073.PubMedGoogle Scholar
  205. 205.
    Voet, D., and Voet, J. G. (1990) Biochemistry, John Wiley & Sons, N. Y., pp. 382–387.Google Scholar
  206. 206.
    Babady, N. E., Pang, Y. P., Elpeleg, O., and Isaya, G. (2007) Proc. Natl. Acad. Sci. USA, 104, 6158–6163.PubMedGoogle Scholar
  207. 207.
    Xia, L., Bjornstedt, M., Nordman, T., Eriksson, L. C., and Olsson, J. M. (2001) Eur. J. Biochem., 268, 1486–1490.PubMedGoogle Scholar
  208. 208.
    Tyagi, T. K., Ponnan, P., Singh, P., Bansal, S., Batra, A., Collin F., Guillonneau, F., Jore, D., Patkar, S. A., Saxena, R. K., Parnar, V. S., Rastogi, R. C., and Raj, H. G. (2009) Biochimie, 91, 868–875.PubMedGoogle Scholar
  209. 209.
    Kareyeva, A. V., Grivennikova, V. G., Cecchini, G., and Vinogradov, A. D. (2011) FEBS Lett., 585, 385–389.PubMedCentralPubMedGoogle Scholar
  210. 210.
    Lester, J., and Reed, L. G. (2001) J. Biol. Chem., 276, 38329–38336.Google Scholar
  211. 211.
    Yeaman, S. J. (1989) Biochem. J., 257, 625–632.PubMedGoogle Scholar
  212. 212.
    Kikuchi, G. (1973) Mol. Cell. Biochem., 1, 169–187.PubMedGoogle Scholar
  213. 213.
    Chandrasekhar, K., Wang, J., Arjunan, P., Sax, M., Park, Y. H., Nemeria, N. S., Kumaran, S., Song, J., Jordan, F., and Furey, W. (2013) J. Biol. Chem., 288, 15402–15417.PubMedGoogle Scholar
  214. 214.
    Kenney, W. C., Zakim, D., Hogue, P. K., and Singer, T. P. (1972) Eur. J. Biochem., 28, 253–260.PubMedGoogle Scholar
  215. 215.
    Danson, M. J., Eisenthal, R., Hall, S., Kessell, S. R., and Williams, D. L. (1984) Biochem. J., 218, 811–818.PubMedGoogle Scholar
  216. 216.
    Danson, M. J., Conroy, K., McQuattie, A., and Stevenson, K. J. (1987) Biochem. J., 243, 661–665.PubMedGoogle Scholar
  217. 217.
    Brautigam, C. A., Chuang, J. L., Tomchick, D. R., Machius, M., and Chuang, D. T. (2005) J. Mol. Biol., 350, 543–552.PubMedGoogle Scholar
  218. 218.
    Matthews, R. G., Ballou, D. P., Thorpe, C., and Williams, C. H., Jr. (1977) J. Biol. Chem., 252, 3199–3207.PubMedGoogle Scholar
  219. 219.
    Ghisla, S., and Massey, V. (1989) Eur. J. Biochem., 181, 1–17.PubMedGoogle Scholar
  220. 220.
    Starkov, A. A., Fiskum, G., Chinopoulos, C., Lorenzo, B. J., Browne, S. E., Patel, M. S., and Beal, M. F. (2004) J. Neurosci., 24, 7779–7788.PubMedGoogle Scholar
  221. 221.
    Bunik, V. I., and Sievers, C. (2002) Eur. J. Biochem., 269, 5004–5015.PubMedGoogle Scholar
  222. 222.
    Huennekens, F. M., Basford, R. E., and Gabrio, B. W. (1955) J. Biol. Chem., 213, 951–967.PubMedGoogle Scholar
  223. 223.
    Tretter, L., and Adam-Vizi, V. (2004) J. Neurosci., 24, 7771–7778.PubMedGoogle Scholar
  224. 224.
    Grivennikova, V. G., Cecchini, G., and Vinogradov, A. D. (2008) FEBS Lett., 582, 2719–2724.PubMedGoogle Scholar
  225. 225.
    Adam-Vizi, V., and Tretter, L. (2013) Neurochem. Int., 62, 757–763.PubMedGoogle Scholar
  226. 226.
    Tretter, L., and Adam-Vizi, V. (2000) J. Neurosci., 20, 8972–8979.PubMedGoogle Scholar
  227. 227.
    Chinopoulos, C., Tretter, L., and Adam-Vizi, V. (1999) J. Neurochem., 73, 220–228.PubMedGoogle Scholar
  228. 228.
    Wilson, D. F. (2008) Am. J. Physiol. Heart Circ. Physiol., 294, H11–13.PubMedGoogle Scholar
  229. 229.
    Wenger, R. H. (2000) J. Exp. Biol., 203, 1253–1263.PubMedGoogle Scholar
  230. 230.
    Kenneth, N. S., and Rocha, S. (2008) Biochem. J., 414, 19–29.PubMedGoogle Scholar
  231. 231.
    Goda, N., and Kanai, M. (2012) Int. J. Hematol., 95, 457–463.PubMedGoogle Scholar
  232. 232.
    Semenza, G. L. (2012) Cell, 148, 399–408.PubMedCentralPubMedGoogle Scholar
  233. 233.
    Harris, E. J., and van Dam, K. (1968) Biochem. J., 106, 759–766.PubMedGoogle Scholar
  234. 234.
    Halestrap, A. P., and Quinlan, P. T. (1983) Biochem. J., 214, 387–393.PubMedGoogle Scholar
  235. 235.
    Glock, G. E., and McLean, P. (1956) Exp. Cell. Res., 11, 234–236.PubMedGoogle Scholar
  236. 236.
    Jacobson, K. B., and Kaplan N. O. (1957) J. Biol. Chem., 226, 603–613.PubMedGoogle Scholar
  237. 237.
    Lester, R. L., and Hatefi, Y. (1958) Biochim. Biophys. Acta, 29, 103–112.PubMedGoogle Scholar
  238. 238.
    Klingenberg, M., Slenczka, W., and Ritt, E. (1959) Biochem. Z., 332, 47–66.PubMedGoogle Scholar
  239. 239.
    Williamson, D. H., Lund, P., and Krebs, H. A. (1967) Biochem. J., 103, 514–527.PubMedGoogle Scholar
  240. 240.
    Klingenberg, M. (1968) Biological Oxidation (Singer, T. P., ed.) John Wiley Interscience Publisher, N. Y., pp. 3–54.Google Scholar
  241. 241.
    Eng, J., Lynch, R. M., and Balaban, R. S. (1989) Biophys. J., 55, 621–630.PubMedCentralPubMedGoogle Scholar
  242. 242.
    Hassinen, I. E. (1986) Biochim. Biophys. Acta, 853, 135–151.PubMedGoogle Scholar
  243. 243.
    Skulachev, V. P. (2011) Aging, 3, 1045–1050.PubMedCentralPubMedGoogle Scholar
  244. 244.
    Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Jr., Zorov, D. B., and Skulachev, V. P. (2011) Curr. Drug Targets, 12, 800–826.PubMedGoogle Scholar
  245. 245.
    Murphy, M. P. (2013) Free Radic. Biol. Med., http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.010.Google Scholar
  246. 246.
    Kehrer, J. P. (2007) in Encyclopedia of Stress (Fink, G., ed.) 2nd Edn., Academic Press, Oxford, Vol. 3, pp. 331–335.Google Scholar
  247. 247.
    Zhang, H., Limphong, P., Pieper, J., Liu, Q., Rodesch, C. K., Christians, E., and Benjamin, I. J. (2012) FASEB J., 26, 1442–1451.PubMedGoogle Scholar
  248. 248.
    Griffith, O. W., Bridges, R. J., and Meister, A. (1979) Proc. Natl. Acad. Sci. USA, 76, 6319–6322.PubMedGoogle Scholar
  249. 249.
    Chandler, M. L., and Varandani, P. T. (1975) Biochemistry, 14, 2107–2115.PubMedGoogle Scholar
  250. 250.
    Cordes, C. M., Bennett, R. G., Siford, G. L., and Hamel, F. G. (2011) PLoS One, 6, e18138.PubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Department of Biochemistry, Biological FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations