Biochemistry (Moscow)

, Volume 78, Issue 13, pp 1431–1446 | Cite as

Hydroxylamine derivatives for regulation of spermine and spermidine metabolism

  • M. A. Khomutov
  • J. Weisell
  • M. Hyvönen
  • T. A. Keinänen
  • J. Vepsäläinen
  • L. Alhonen
  • A. R. KhomutovEmail author
  • S. N. Kochetkov


The biogenic polyamines spermine, spermidine, and their precursor putrescine are present in micro-to-millimolar concentrations in all cell types and are vitally important for their normal growth. High intracellular content of spermine and spermidine determines the multiplicity of the cellular functions of the polyamines. Many of these functions are not well characterized at the molecular level, ensuring the ongoing development of this field of biochemistry. Tumor cells have elevated polyamine level if compared with normal cells, and this greatly stimulates the search for new opportunities to deplete the intracellular pool of spermine and spermidine resulting in decrease in cell growth and even cell death. O-Substituted hydroxylamines occupy their own place among chemical regulators of the activity of the enzymes of polyamine metabolism. Varying the structure of the alkyl substituent made it possible to obtain within one class of chemical compounds highly effective inhibitors and regulators of the activity of all the enzymes of putrescine, spermine and spermidine metabolism (with the exception of FAD-dependent spermine oxidase and acetylpolyamine oxidase), effectors of the polyamine transport system, and even actively transported in cells “proinhibitor” of ornithine decarboxylase. Some principles for the design of specific inhibitors of these enzymes as well as the peculiarities of cellular effects of corresponding O-substituted hydroxylamines are discussed.

Key words

polyamines spermine spermidine O-substituted hydroxylamines ornithine decarboxylase S-adenosylmethionine decarboxylase spermidine/spermine-N1-acetyltransferase cell culture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Leeuwenhoek, A. (1678) Philos. Trans. R. Soc. London, 12, 1040–1043.Google Scholar
  2. 2.
    Dudley, H. W., Rosenheim, M. C., and Rosenheim, O. (1924) Biochem. J., 18, 1263–1272.PubMedGoogle Scholar
  3. 3.
    Russell, D., and Snyder, S. H. (1968) Proc. Natl. Acad. Sci. USA, 60, 1420–1427.PubMedCrossRefGoogle Scholar
  4. 4.
    Janne, J., and Raina, A. (1968) Acta Chem. Scand., 22, 1349–1351.PubMedCrossRefGoogle Scholar
  5. 5.
    Russell, D. H. (1973) Polyamines in Normal and Neoplastic Growth, Raven Press, New York.Google Scholar
  6. 6.
    Cohen, S. S. (1998) A Guide to the Polyamines, Oxford University Press, New York.Google Scholar
  7. 7.
    Pegg, A. E., and Casero, R. A. (2011) Polyamines: Methods and Protocols. Methods in Molecular Biology, 720, 3–35.CrossRefGoogle Scholar
  8. 8.
    Rosenthal, S. M., and Tabor, C. W. (1956) J. Pharm. Exp. Ther., 116, 131–138.Google Scholar
  9. 9.
    Casero, R. A., and Marton, L. J. (2007) Nat. Rev. Drug Discov., 6, 373–390.PubMedCrossRefGoogle Scholar
  10. 10.
    Kahana, C. (2009) Cell. Mol. Life Sci., 66, 2479–2488.PubMedCrossRefGoogle Scholar
  11. 11.
    Coffino, Ph. (2001) Nature Rev. Mol. Cell Biol., 2, 188–194.CrossRefGoogle Scholar
  12. 12.
    Kurian, L., Palanimurugan, R., Godderz, D., and Dohmen, R. J. (2011) Nature, 477, 490–494.PubMedCrossRefGoogle Scholar
  13. 13.
    Seiler, N. (2003) Curr. Drug Targets, 4, 537–564.PubMedCrossRefGoogle Scholar
  14. 14.
    Wallace, H. M., Fraser, A. V., and Hughes A. (2003) Biochem. J., 376, 1–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Wallace, H. M., and Fraser, A. V. (2004) Amino Acids, 26, 353–365.PubMedCrossRefGoogle Scholar
  16. 16.
    Casero, R. A., and Woster, P. M. (2001) J. Med. Chem., 44, 1–26.PubMedCrossRefGoogle Scholar
  17. 17.
    Casero, R. A., and Woster, P. M. (2009) J. Med. Chem., 52, 4551–4573.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Wallace, H. M. (2007) Expert. Opin. Pharmacother., 8, 2109–2116.PubMedCrossRefGoogle Scholar
  19. 19.
    Birkholz, L.-M., Williams, M., Niemand, J., Louw, A. I., Persson, L., and Heby, O. (2011) Biochem. J., 438, 229–244.CrossRefGoogle Scholar
  20. 20.
    Pegg, A. E., and McCann, P. P. (1992) Pharmacol. Ther., 56, 359–377.PubMedCrossRefGoogle Scholar
  21. 21.
    Khomutov, R. M., Zavalova, L. L., Syrku, V. I., Artamonova, E. Yu., and Khomutov, A. R. (1983) Bioorg. Khim., 9, 130–131.PubMedGoogle Scholar
  22. 22.
    Artamonova, E. Yu., Khomutov, A. R., Zavalova, L. L., and Khomutov, R. M. (1986) Bioorg. Khim., 12, 206–212.Google Scholar
  23. 23.
    Kramer, D. L., Khomutov, R. M., Bukin, Yu. V., Khomutov, A. R., and Porter, C. W. (1989) Biochem. J., 259, 325–331.PubMedGoogle Scholar
  24. 24.
    Kolb, M., and Barth, J. (1985) Liebigs Ann. Chem., 1035–1040.Google Scholar
  25. 25.
    Pegg, A. E., Jones, D. B., and Secrist III, J. A. (1988) Biochemistry, 27, 1408–1415.PubMedCrossRefGoogle Scholar
  26. 26.
    McCloskey, D. E., Bale, S., Secrist 3rd, J. A., Tiwari, A., Moss 3rd, T. H., Valiyaveettil, J., Brooks, W. H., Guida, W. C., Pegg, A. E., and Ealick, S. E. (2009) J. Med. Chem., 52, 1388–1407.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Wu, Y. Q., and Woster, P. M. (1993) Bioorg. Med. Chem., 1, 349–360.PubMedCrossRefGoogle Scholar
  28. 28.
    Wu, Y. Q., and Woster, P. M. (1995) Biochem. Pharmacol., 49, 1125–1133.PubMedCrossRefGoogle Scholar
  29. 29.
    Guo, J. Q., Wu, Y. Q., Rattendi, D., Bacchi, C. J., and Woster, P. M. (1995) J. Med. Chem., 38, 1770–1777.PubMedCrossRefGoogle Scholar
  30. 30.
    Kitz, R., and Wilson, I. B. (1962) J. Biol. Chem., 237, 3245–3249.PubMedGoogle Scholar
  31. 31.
    Pegg, A. E. (1983) Methods Enzymol., 94, 239–247.PubMedGoogle Scholar
  32. 32.
    Pegg, A. E. (1984) Cell Bochem. Funct., 2, 11–15.CrossRefGoogle Scholar
  33. 33.
    Wetkamp, E. L. C., Dixon, H. B. F., Khomutov, A. R., and Khomutov, R. M. (1991) Biochem. J., 277, 643–645.Google Scholar
  34. 34.
    Capitani, G., Eliot, A. C., Gut, H., Khomutov, R. M., Kirsch, J. F., and Grutter, M. G. (2003) Biochim. Biophys. Acta, 1647, 55–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Anton, D. L., and Kutney, R. (1987) Biochemistry, 26, 6444–6447.PubMedCrossRefGoogle Scholar
  36. 36.
    Diaz, E., and Anton, D. L. (1991) Biochemistry, 30, 4078–4081.PubMedCrossRefGoogle Scholar
  37. 37.
    Li, Y-F., Hess, S., Pannell, L. K., Tabor, C. W., and Tabor, H. (2001) Proc. Natl. Acad. Sci. USA, 98, 10578–10583.PubMedCrossRefGoogle Scholar
  38. 38.
    Pankaskie, M., and Abdel-Monem, M. M. (1980) J. Med. Chem., 23, 121–127.PubMedCrossRefGoogle Scholar
  39. 39.
    Khomutov, M. A. (2012) Novel Biologically-Active Esters of Hydroxylamine and C-Methylated Polyamine Analogues: Ph. D. Thesis [in Russian], Engelhardt Institute of Molecular Biology, Moscow.Google Scholar
  40. 40.
    O’Leary, M. H., and Banghin, R. L. (1977) J. Biol. Chem., 252, 7168–7173.PubMedGoogle Scholar
  41. 41.
    Parsons, I. D., Persson, B., Mekhalfia, A., Blackburn, G. M., and Stockley, P. G. (1995) Nucleic Acids Res., 23, 211–216.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Shantz, L. M., Stanley, B. A., Secrist III, J. A., and Pegg, A. E. (1992) Biochemistry, 31, 6848–6855.PubMedCrossRefGoogle Scholar
  43. 43.
    Wickner, R. B., Tabor, C. W., and Tabor, H. (1970) J. Biol. Chem., 245, 2132–2139.PubMedGoogle Scholar
  44. 44.
    Tolbert, D. W., Ekstrom, J. L., Mathews, I. I., Secrist III, J. A., Kapoor, P., Pegg, A. E., and Ealick, S. E. (2001) Biochemistry, 40, 9484–9494.PubMedCrossRefGoogle Scholar
  45. 45.
    Danzin, C., Marchal, P., and Casara, P. (1990) Biochem. Pharmacol., 40, 1499–1503.PubMedCrossRefGoogle Scholar
  46. 46.
    Wu, Y., and Woster, P. M. (1992) J. Med. Chem., 35, 3196–3201.PubMedCrossRefGoogle Scholar
  47. 47.
    Casara, P., Marchal, P., Wagner, J., and Danzin, C. (1989) J. Am. Chem. Soc., 111, 9111–9113.CrossRefGoogle Scholar
  48. 48.
    Antelli, R., Stjernborg, L., Khomutov, A. R., Khomutov, R. M., and Persson, L. (1991) Eur. J. Biochem., 196, 551–556.CrossRefGoogle Scholar
  49. 49.
    Kramer, D. L., Miller, J. M., Bergeron, R. J., Khomutov, R. M., Khomutov, A. R., and Porter, C. W. (1993) J. Cell. Physiol., 155, 399–407.PubMedCrossRefGoogle Scholar
  50. 50.
    Madhubala, R., Secrist III, J. A., and Pegg, A. E. (1988) Biochem. J., 254, 45–50.PubMedGoogle Scholar
  51. 51.
    McCann, P. P., and Pegg, A. E. (1992) Pharmacol. Ther., 54, 195–215.PubMedCrossRefGoogle Scholar
  52. 52.
    Metcalf, B. W., Bey, P., Danzin, C., Jung, M. J., Casara, J., and Vevert, J. P. (1978) J. Am. Chem. Soc., 100, 2551–2553.CrossRefGoogle Scholar
  53. 53.
    Raul, F. (2007) Biochem. Soc. Trans., 35, 353–355.PubMedCrossRefGoogle Scholar
  54. 54.
    Heby, O., Persson, L., and Rentala, M. (2007) Amino Acids, 33, 359–366.PubMedCrossRefGoogle Scholar
  55. 55.
    Burri, C. C., and Brun, R. (2003) Parasitol. Res., 90, 49–52.Google Scholar
  56. 56.
    Shapiro, J., and Lui, H. (2001) Skin. Ther. Lett., 6, 1–3.Google Scholar
  57. 57.
    Babbar, N., and Gerner, E. W. (2011) Recent Results Cancer Res., 188, 49–64.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Khomutov, R. M., Hyvonen, T., Karvonen, E., Kauppinen, L., Paalanen, T., Paulin, L., Eloranta, T., Pajula, R. L., Andersson, L. C., and Poso, H. (1985) Biochem. Biophys. Res. Commun., 130, 596–602.PubMedCrossRefGoogle Scholar
  59. 59.
    Khomutov, R. M., Denisova, G. F., Khomutov, A. R., Belostotskaia, K. M., Shlosman, R. B., and Artamonova, E. Yu. (1985) Bioorg. Khim., 11, 1574–1576.PubMedGoogle Scholar
  60. 60.
    Weisell, J. M. (2012) Structure and Function of Charge Deficient Polyamines: Ph. D. Thesis, Kuopio, University of Eastern Finland.Google Scholar
  61. 61.
    Weisell, J., Hyvonen, M. T., Alhonen, L., Vepsalainen, J., Keinanen, T. A., and Khomutov, A. R. (2013) Curr. Pharm. Des., May 16 [Epub ahead of print].Google Scholar
  62. 62.
    Singh, S., Mukherjee, A., Khomutov, A. R., Persson, L., Heby, O., Chatterjee, M., and Madhubala, R. (2007) Antimicrob. Agents Chemother., 51, 528–534.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Dufe, V. T., Ingner, D., Heby, O., Khomutov, A. R., Persson, L., and Al-Karadaghi, S. (2007) Biochem. J., 405, 261–268.PubMedCrossRefGoogle Scholar
  64. 64.
    DasGupta, R., Krause-Ihle, T., Bergmann, B., Muller, I. B., Khomutov, A. R., Muller, S., Walter, R. D., and Luersen, K. (2005) Antimicrob. Agents Chemother., 49, 2857–2864.CrossRefGoogle Scholar
  65. 65.
    Stanek, J., Frei, J., Mett, H., Schneider, P., and Regenass, U. (1992) J. Med. Chem., 35, 1339–1344.PubMedCrossRefGoogle Scholar
  66. 66.
    Birkholtz, L.-M., Joubert, F., Neitz, A. W. H., and Louw, A. I. (2003) Protein Struct. Funct. Genet., 50, 464–473.CrossRefGoogle Scholar
  67. 67.
    Liu, W., Peterson, P. E., Carter, R. J., Zhou, X., Langston, J. A., Fisher, A. J., and Toney, M. D. (2004) Biochemistry, 43, 10896–10905.PubMedCrossRefGoogle Scholar
  68. 68.
    Markovic-Housley, Z., Schirmer, T., Hohenester, E., Khomutov, A. R., Khomutov, R. M., Karpeisky, M. Ya., Sandmeier, E., Christen, Ph., and Jansonius, J. N. (1996) Eur. J. Biochem., 236, 1025–1032.PubMedCrossRefGoogle Scholar
  69. 69.
    Haider, N., Eschbach, M. L., Dias, Sde S., Gilberger, T. W., Walter, R. D., and Luersen, K. (2005) Mol. Biochem. Parasitol., 142, 224–236.PubMedCrossRefGoogle Scholar
  70. 70.
    Keinanen, T. A., Hyvonen, T., Pankaskie, M. C., Vepsalainen, J. J., and Eloranta, T. O. (1994) J. Biochem. (Tokyo), 116, 1056–1062.Google Scholar
  71. 71.
    Hyvonen, T., Keinanen, T. A., Khomutov, A. R., Khomutov, R. M., and Eloranta, T. O. (1992) J. Chromatogr., 574, 17–21.PubMedCrossRefGoogle Scholar
  72. 72.
    Poulin, R., Secrist III, J. A., and Pegg, A. E. (1989) Biochem. J., 263, 215–221.PubMedGoogle Scholar
  73. 73.
    Turchanowa, L., Shvetsov, A. S., Demin, A. V., Khomutov, A. R., Wallace, H. M., Stein, J., and Milovic, V. (2002) Biochem. Pharmacol., 64, 649–655.PubMedCrossRefGoogle Scholar
  74. 74.
    Khomutov, A. R., Shvetsov, A. S., Vepsalainen, J., Kramer, D. L., Hyvonen, T., Keinanen, T. A., Eloranta, T. O., Porter, C. W., and Khomutov, R. M. (1996) Bioorg. Khim., 22, 557–559.PubMedGoogle Scholar
  75. 75.
    Persson, L., Khomutov, A. R., and Khomutov, R. M. (1989) Biochem. J., 257, 929–931.PubMedGoogle Scholar
  76. 76.
    Hyvonen, T., Alakuijala, L., Andersson, L., Khomutov, A. R., Khomutov, R. M., and Eloranta, T. (1988) J. Biol. Chem., 263, 11138–11144.PubMedGoogle Scholar
  77. 77.
    Hyvonen, T., Khomutov, A. R., Khomutov, R. M., Lapinjoki, S., and Eloranta, T. O. (1990) J. Biochem. (Tokyo), 107, 817–820.Google Scholar
  78. 78.
    Milovic, V., Turchanowa, L., Khomutov, A. R., Khomutov, R. M., Caspary, W. F., and Stein, J. (2001) Biochem. Pharmacol., 61, 199–206.CrossRefGoogle Scholar
  79. 79.
    Singh, S., Jhingran, A., Sharma, A., Simonian, A. R., Soininen, P., Vepsalainen, J., Khomutov, A. R., and Madhubala, R. (2008) Biochem. Biophys. Res. Commun., 375, 168–172.PubMedCrossRefGoogle Scholar
  80. 80.
    Dabir, S., Dabir, S., and Somranshi, B. (2005) Int. J. Biol. Sci., 1, 114–122.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Sastre, M., Galea, E., Feinstein, D., Reis, D. J., and Regunathan, S. (1998) Biochem. J., 330, 1405–1409.PubMedGoogle Scholar
  82. 82.
    Khomutov, M. A., Mandal, S., Weisell, J., Saxena, N., Simonian, A. R., Vepsalainen, J., Madhubala, R., and Kochetkov, S. N. (2010) Amino Acids, 38, 509–517.PubMedCrossRefGoogle Scholar
  83. 83.
    Rajam, M. V., Weinstein, L. H., and Galston, A. W. (1985) Proc. Natl. Acad. Sci. USA, 82, 6874–6878.PubMedCrossRefGoogle Scholar
  84. 84.
    Khomutov, A. R., Dzavakhia, V. G., Voinova, T. M., Ermolinsky, B. S., and Khomutov, R. M. (1989) Bioorg. Khim., 15, 707–709.Google Scholar
  85. 85.
    Khomutov, R. M., Khurs, E. N., Dzavakhia, V. G., Voinova, T. M., and Ermolinsky, B. S. (1989) Bioorg. Khim., 13, 1422–1424.Google Scholar
  86. 86.
    Yamaguchi, I. (1982) J. Pest. Sci., 7, 307–316.Google Scholar
  87. 87.
    Parkkinen, J. J., Lammi, M. J., Agren, U., Tammi, M., Keinanen, T. A., Hyvonen, T., and Eloranta, T. O. (1997) J. Cell. Biochem., 66, 165–174.PubMedCrossRefGoogle Scholar
  88. 88.
    Mett, H., Stanek, J., Lopez-Ballester, J. A., Janne, J., Alhonen, L., Sinervirta, R., Frei, J., and Regenass, U. (1993) Cancer Chemother. Pharmacol., 32, 39–45.PubMedCrossRefGoogle Scholar
  89. 89.
    Frei, J., and Stanek, J. (1997) United States Patent US005610195A.Google Scholar
  90. 90.
    Eloranta, T. O., Khomutov, A. R., Khomutov, R. M., and Hyvonen, T. (1990) J. Biochem. (Tokyo), 108, 593–598.Google Scholar
  91. 91.
    Hyvonen, T., Keinanen, T. A., Khomutov, A. R., Khomutov, R. M., and Eloranta, T. O. (1995) Life Sci., 56, 349–360.PubMedCrossRefGoogle Scholar
  92. 92.
    Ervin, B. G., Persson, L., and Pegg, A. E. (1984) Biochemistry, 23, 4250–4255.CrossRefGoogle Scholar
  93. 93.
    Roblot, G., Wylde, R., Martin, A., and Parello, J. (1993) Tetrahedron, 29, 6381–6398.CrossRefGoogle Scholar
  94. 94.
    Simonian, A., Khomutov, A., Hyvonen, T., Grigorenko, N., Keinanen, T., Vepsalainen, J., Alhonen, L., and Janne, J. (2007) Nucleosides, Nucleotides & Nucleic Acids, 26, 1245–1248.CrossRefGoogle Scholar
  95. 95.
    Keinanen, T., Hyvonen, T., Vepsalainen, J., Alhonen, L., Khomutov, A., and Janne, J. (2014) Russ. J. Bioorg. Chem., 40, in press.Google Scholar
  96. 96.
    Fierke, C. A., and Jencks, W. P. (1986) J. Biol. Chem., 261, 7603–7606.PubMedGoogle Scholar
  97. 97.
    Jarvinen, A. J., Cerrada-Gimenez, M., Grigorenko, N. A., Khomutov, A. R., Vepsalainen, J. J., Sinervirta, R. M., Keinanen, T. A., Alhonen, L. I., and Janne, J. E. (2006) J. Med. Chem., 49, 399–406.PubMedCrossRefGoogle Scholar
  98. 98.
    Keinanen, T. A., unpublished data.Google Scholar
  99. 99.
    Berger, M. L., Khomutov, A. R., and Rebernik, P. (1996) Neuro. Sci. Lett., 203, 25–28.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. A. Khomutov
    • 1
  • J. Weisell
    • 2
  • M. Hyvönen
    • 2
  • T. A. Keinänen
    • 2
  • J. Vepsäläinen
    • 2
  • L. Alhonen
    • 2
  • A. R. Khomutov
    • 1
    Email author
  • S. N. Kochetkov
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.School of Pharmacy, Biocenter KuopioUniversity of Eastern FinlandKuopioFinland

Personalised recommendations