Biochemistry (Moscow)

, Volume 78, Issue 13, pp 1405–1414 | Cite as

Molecular chaperone GroEL/ES: Unfolding and refolding processes

  • N. A. Ryabova
  • V. V. Marchenkov
  • S. Yu. Marchenkova
  • N. V. Kotova
  • G. V. SemisotnovEmail author


Molecular chaperones are a special class of heat shock proteins (Hsp) that assist the folding and formation of the quaternary structure of other proteins both in vivo and in vitro. However, some chaperones are complex oligomeric proteins, and one of the intriguing questions is how the chaperones fold. The representatives of the Escherichia coli chaperone system GroEL (Hsp60) and GroES (Hsp10) have been studied most intensively. GroEL consists of 14 identical subunits combined into two interacting ring-like structures of seven subunits each, while the co-chaperone GroES interacting with GroEL consists of seven identical subunits combined into a dome-like oligomeric structure. In spite of their complex quaternary structure, GroEL and GroES fold well both in vivo and in vitro. However, the specific oligomerization of GroEL subunits is dependent on ligands and external conditions. This review analyzes the literature and our own data on the study of unfolding (denaturation) and refolding (renaturation) processes of these molecular chaperones and the effect of ligands and solvent composition. Such analysis seems to be useful for understanding the folding mechanism not only of the GroEL/GroES complex, but also of other oligomeric protein complexes.

Key words

protein folding, molecular chaperones, GroEL, GroES 



8-anilino-1-naphthalenesulfonic acid


heat shock protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anfinsen, C. B. (1973) Science, 181, 223–230.PubMedCrossRefGoogle Scholar
  2. 2.
    Seckler, R., and Jaenicke, R. (1992) FASEB J., 6, 2545–2552.PubMedGoogle Scholar
  3. 3.
    Gething, M. J., and Sambrook, J. (1992) Nature, 355, 33–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Freedman, R. B. (1992) in Protein Folding (Creighton, T. E., ed.) WH Freeman, New York, pp. 457–541.Google Scholar
  5. 5.
    Ellis, J. (1987) Nature, 328, 378–379.PubMedCrossRefGoogle Scholar
  6. 6.
    Lindquist, S., and Craig, E. A. (1988) Annu. Rev. Genet., 22, 631–677.PubMedCrossRefGoogle Scholar
  7. 7.
    Gething, M.-J. (ed.) (1997) Guidebook to Molecular Chaperones and Protein-Folding Catalysts, Oxford University Press, Oxford.Google Scholar
  8. 8.
    Ellis, J., and Hemmingsen, S. M. (1989) Trends Biochem. Sci., 14, 339–342.PubMedCrossRefGoogle Scholar
  9. 9.
    Saibil, H., and Wood, S. (1993) Curr. Opin. Struct. Biol., 3, 207–213.CrossRefGoogle Scholar
  10. 10.
    Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L., and Sigler, P. B. (1994) Nature, 371, 578–586.PubMedCrossRefGoogle Scholar
  11. 11.
    Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch, L., and Deisenhofer, J. (1996) Nature, 379, 37–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Xu, Z., Horwich, A. L., and Sigler, P. B. (1997) Nature, 388, 741–750.PubMedCrossRefGoogle Scholar
  13. 13.
    Georgopoulos, C. P., Hendrix, R. W., Casjens, S. R., and Kaiser, A. D. (1973) J. Mol. Biol., 76, 45–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Sternberg, N. (1973) J. Mol. Biol., 76, 25–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Herendeen, S. L., VanBogelen, R. A., and Neidhardt, F. C. (1979) J. Bacteriol., 139, 185–194.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Hemmingsen, S. M., Woolford, C., van der Vies, S. M., Tilly, K., Dennis, D. T., Georgopoulos, C. P., Hendrix, R. W., and Ellis, R. J. (1988) Nature, 333, 330–334.PubMedCrossRefGoogle Scholar
  17. 17.
    Bochkareva, E. S., Lissin, N. M., and Girshovich, A. S. (1988) Nature, 336, 254–257.PubMedCrossRefGoogle Scholar
  18. 18.
    Horwich, A. L., Low, K. B., Fenton, W. A., Hirshfield, I. N., and Furtak, K. (1993) Cell, 74, 909–917.PubMedCrossRefGoogle Scholar
  19. 19.
    Ewalt, K. L., Hendrick, J. P., Houry, W. A., and Hartl, F. U. (1997) Cell, 90, 491–500.PubMedCrossRefGoogle Scholar
  20. 20.
    Hartl, F. U., and Martin, J. (1995) Curr. Opin. Struct. Biol., 5, 92–102.PubMedCrossRefGoogle Scholar
  21. 21.
    Fayet, O., Ziegelhoffer, T., and Georgopulos, C. (1989) J. Bacteriol., 171, 1379–1385.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Viitanen, P. V., Gatenby, A. A., and Lorimer, G. H. (1992) Protein Sci., 1, 363–369.PubMedCrossRefGoogle Scholar
  23. 23.
    Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F. X., and Kiefhaber, T. (1991) Biochemistry, 30, 1586–1591.PubMedCrossRefGoogle Scholar
  24. 24.
    Goloubinoff, P., Christeller, J. T., Gatenby, A. A., and Lorimer, G. H. (1989) Nature, 342, 884–889.PubMedCrossRefGoogle Scholar
  25. 25.
    Braig, K., Adams, P. D., and Brunger, A. T. (1995) Nat. Struct. Biol., 2, 1083–1094.PubMedCrossRefGoogle Scholar
  26. 26.
    Langer, T., Pfeifer, G., Martin, J., Baumeister, W., and Hartl, F. U. (1992) EMBO J., 11, 4757–4765.PubMedGoogle Scholar
  27. 27.
    Braig, K., Simon, M., Furuya, F., Hainfeld, J. F., and Horwich, A. L. (1993) Proc. Natl. Acad. Sci. USA, 90, 3978–3982.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen, S., Roseman, A. M., Hunter, A. S., Wood, S. P., Burston, S. G., Ranson, N. A., Clarke, A. R., and Saibil, H. R. (1994) Nature, 371, 261–264.PubMedCrossRefGoogle Scholar
  29. 29.
    Ishii, N., Taguchi, H., Sasabe, H., and Yoshida, M. (1994) J. Mol. Biol., 236, 691–696.PubMedCrossRefGoogle Scholar
  30. 30.
    Fenton, W. A., Kashi, Y., Furtak, K., and Horwich, A. L. (1994) Nature, 371, 614–619.PubMedCrossRefGoogle Scholar
  31. 31.
    Roseman, A. M., Chen, S., White, H., Braig, K., and Saibil, H. R. (1996) Cell, 87, 241–251.PubMedCrossRefGoogle Scholar
  32. 32.
    Cheng, M. Y., Hartl, F. U., Martin, J., Pollock, R. A., Kalousek, F., Neupert, W., Hallberg, E. M., Hallberg, R. L., and Horwich, A. L. (1989) Nature, 337, 620–625.PubMedCrossRefGoogle Scholar
  33. 33.
    Buckle, A. M., Zahn, R., and Fersht, A. R. (1997) Proc. Natl. Acad. Sci. USA, 94, 3571–3575.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen, L., and Sigler, P. B. (1999) Cell, 99, 757–768.PubMedCrossRefGoogle Scholar
  35. 35.
    Houry, W. A., Frishman, D., Eckerskorn, C., Lottspeich, F., and Hartl, F. U. (1999) Nature, 402, 147–154.PubMedCrossRefGoogle Scholar
  36. 36.
    Chaudhuri, T. K., Farr, G. W., Fenton, W. A., Rospert, S., and Horwich, A. L. (2001) Cell, 107, 235–246.PubMedCrossRefGoogle Scholar
  37. 37.
    Katsumata, K., Okazaki, A., Tsurupa, G. P., and Kuwajima, K. (1996) J. Mol. Biol., 264, 643–649.PubMedCrossRefGoogle Scholar
  38. 38.
    Martin, J., Langer, T., Boteva, R., Schramel, A., Horwich, A. L., and Hartl, F. U. (1991) Nature, 352, 36–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Lin, Z., Schwartz, F. P., and Eisenstein, E. (1995) J. Biol. Chem., 270, 1011–1014.PubMedCrossRefGoogle Scholar
  40. 40.
    Hayer-Hartl, M. K., Ewbank, J. J., Creighton, T. E., and Hartl, F. U. (1994) EMBO J., 13, 3192–3202.PubMedGoogle Scholar
  41. 41.
    Perrett, S., Zahn, R., Stenberg, G., and Fersht, A. R. (1997) J. Mol. Biol., 269, 892–901.PubMedCrossRefGoogle Scholar
  42. 42.
    Aoki, K., Taguchi, H., Shindo, Y., Yoshida, M., Ogasahara, K., Yutani, K., and Tanaka, N. (1997) J. Biol. Chem., 272, 32158–32162.PubMedCrossRefGoogle Scholar
  43. 43.
    Katsumata, K., Okazaki, A., and Kuwajima, K. (1996) J. Mol. Biol., 258, 827–838.PubMedCrossRefGoogle Scholar
  44. 44.
    Marchenko, N. Yu., Marchenkov, V. V., Kaysheva, A. L., Kashparov, I. A., Kotova, N. V., Kaliman, P. A., and Semisotnov, G. V. (2006) Biochemistry (Moscow), 71, 1357–1364.CrossRefGoogle Scholar
  45. 45.
    Viitanen, P. V., Lubben, T. H., Reed, J., Goloubinoff, P., O’Keefe, D. P., and Lorimer, G. H. (1990) Biochemistry, 29, 5665–5671.PubMedCrossRefGoogle Scholar
  46. 46.
    Schmidt, M., Rutkat, K., Rachel, R., Pfeifer, G., Jaenicke, R., Viitanen, P., Lorimer, G., and Buchner, J. (1994) Science, 265, 656–659.PubMedCrossRefGoogle Scholar
  47. 47.
    Jackson, G. S., Staniforth, R. A., Halsall, D. J., Atkinson, T., Holbrook, J. J., Clarke, A. R., and Burston, S. G. (1993) Biochemistry, 32, 2554–2563.PubMedCrossRefGoogle Scholar
  48. 48.
    Burston, S. G., Ranson, N. A., and Clarke, A. R. (1995) J. Mol. Biol., 249, 138–152.PubMedCrossRefGoogle Scholar
  49. 49.
    Bochkareva, E. S., Lissin, N. M., Flynn, G. C., Rothman, J. E., and Girshovich, A. S. (1992) J. Biol. Chem., 267, 6796–6800.PubMedGoogle Scholar
  50. 50.
    Todd, M. J., Viitanen, P. V., and Lorimer, G. H. (1994) Science, 265, 659–666.PubMedCrossRefGoogle Scholar
  51. 51.
    Llorca, O., Carrascosa, J. L., and Valpuesta, J. M. (1996) J. Biol. Chem., 271, 68–76.PubMedCrossRefGoogle Scholar
  52. 52.
    Lissin, N. M., Venyaminov, S. Yu., and Girshovich, A. S. (1990) Nature, 348, 339–342.PubMedCrossRefGoogle Scholar
  53. 53.
    Lissin, N. M., and Hemmingsen, S. M. (1993) FEBS Lett., 324, 41–49.PubMedCrossRefGoogle Scholar
  54. 54.
    Surin, A. K., Kotova, N. V., Marchenkova, S. Yu., Marchenkov, V. V., and Semisotnov, G. V. (1999) Bioorg. Khim., 25, 358–364.PubMedGoogle Scholar
  55. 55.
    Ybarra, J., and Horowitz, P. M. (1995) J. Biol. Chem., 270, 22962–22967.PubMedCrossRefGoogle Scholar
  56. 56.
    Creighton, T. E. (1979) J. Mol. Biol., 129, 235–264.PubMedCrossRefGoogle Scholar
  57. 57.
    Goldenberg, D. P., and Creighton, T. E. (1984) Anal. Biochem., 138, 1–18.PubMedCrossRefGoogle Scholar
  58. 58.
    Gorovits, B. M., Seale, J. W., and Horowitz, P. M. (1995) Biochemistry, 34, 13928–13933.PubMedCrossRefGoogle Scholar
  59. 59.
    Arai, M., Inobe, T., Maki, K., Ikura, T., Kihara, H., Amemiya, Y., and Kuwajima, K. (2003) Protein Sci., 12, 672–680.PubMedCrossRefGoogle Scholar
  60. 60.
    Hiragi, Yu., Seki, Ya., Ichimura, K., and Soda, K. (2002) J. Appl. Cryst., 35, 1–7.CrossRefGoogle Scholar
  61. 61.
    Lissin, N. M. (1995) FEBS Lett., 361, 55–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Mizobata, T., and Kawata, Ya. (1994) Biochim. Biophys. Acta, 1209, 83–88.PubMedCrossRefGoogle Scholar
  63. 63.
    Horowitz, P. M., Hua, Su., and Gibbons, D. L. (1995) J. Biol. Chem., 270, 1535–1542.PubMedCrossRefGoogle Scholar
  64. 64.
    Gorovits, B. M., and Horowitz, P. M. (1995) J. Biol. Chem., 270, 28551–28556.PubMedCrossRefGoogle Scholar
  65. 65.
    Panda, M., Ybarra, J., and Horowitz, P. M. (2001) J. Biol. Chem., 276, 5253–6259.Google Scholar
  66. 66.
    Panda, M., Ybarra, J., and Horowitz, P. M. (2002) Biochemistry, 41, 12843–12849.PubMedCrossRefGoogle Scholar
  67. 67.
    Panda, M., and Horowitz, P. M. (2002) Biochemistry, 41, 1869–1876.PubMedCrossRefGoogle Scholar
  68. 68.
    Mendosa, J. A., Demeler, B., and Horowitz, P. M. (1994) J. Biol. Chem., 269, 2447–2451.Google Scholar
  69. 69.
    Todd, M. J., and Lorimer, G. H. (1995) J. Biol. Chem., 270, 5388–5394.PubMedCrossRefGoogle Scholar
  70. 70.
    Surin, A. K., Kotova, N. V., Kashparov, I. A., Marchenkov, V. V., and Semisotnov, G. V. (1997) FEBS Lett., 405, 260–262.PubMedCrossRefGoogle Scholar
  71. 71.
    Mendoza, J. A., and Horowitz, P. M. (1994) J. Biol. Chem., 269, 25963–25965.PubMedGoogle Scholar
  72. 72.
    Boudker, O., Todd, M. J., and Freire, E. (1997) J. Mol. Biol., 272, 770–779.PubMedCrossRefGoogle Scholar
  73. 73.
    Landry, S. J., Zellstra-Ryalls, J., Fayet, O., Georgopoulos, C., and Gierasch, L. M. (1993) Nature, 364, 255–258.PubMedCrossRefGoogle Scholar
  74. 74.
    Landry, S. J., Taher, A., Georgopoulos, C., and Van Der Vies, S. M. (1996) Proc. Natl. Acad. Sci. USA, 93, 11622–11637.PubMedCrossRefGoogle Scholar
  75. 75.
    Zondlo, J., Fisher, K. E., Lin, Zh., Ducote, K. R., and Eisenstein, E. (1995) Biochemistry, 34, 10334–10339.PubMedCrossRefGoogle Scholar
  76. 76.
    Higurashi, T., Nosaka, K., Mizobata, T., Nagai, J., and Kawata, Ya. (1999) J. Mol. Biol., 291, 703–713.PubMedCrossRefGoogle Scholar
  77. 77.
    Guidry, J. J., Moczygemba, Ch. K., Steede, N. K., Landry, S. J., and Wittung-Stafshede, P. (2000) Protein Sci., 9, 2109–2117.PubMedCrossRefGoogle Scholar
  78. 78.
    Seale, J. W., Gorovitz, B. M., Ybarra, J., and Horowitz, P. M. (1996) Biochemistry, 35, 4079–4083.PubMedCrossRefGoogle Scholar
  79. 79.
    Sakane, I., Hongo, K., Mizobata, T., and Kawata, Ya. (2009) Protein Sci., 18, 252–257.PubMedGoogle Scholar
  80. 80.
    Iwasa, H., Meshitsuka, Sh., Hongo, K., Mizobata, T., and Kawata, Ya. (2011) J. Biol. Chem., 286, 21796–21805.PubMedCrossRefGoogle Scholar
  81. 81.
    Seale, J. W., and Horowitz, P. M. (1995) J. Biol. Chem., 270, 30268–30270.PubMedCrossRefGoogle Scholar
  82. 82.
    Kuwajima, K., Semisotnov, G. V., Finkelstein, A. V., Sugai, S., and Ptitsyn, O. B. (1993) FEBS Lett., 334, 265–268.PubMedCrossRefGoogle Scholar
  83. 83.
    Mendoza, J. A., Martinez, J. L., and Horowitz, P. M. (1995) Biochim. Biophys. Acta, 1247, 209–214.PubMedCrossRefGoogle Scholar
  84. 84.
    Ybarra, J., and Horowitz, P. M. (1995) J. Biol. Chem., 270, 2213–2215.CrossRefGoogle Scholar
  85. 85.
    Bascos, N., Guidry, J., and Wittung-Stafshede, P. (2004) Protein Sci., 13, 1317–1321.PubMedCrossRefGoogle Scholar
  86. 86.
    Boisvert, D. C., Wang, J., Otwinowski, Z., Horwich, A. L., and Sigler, P. B. (1996) Nat. Struct. Biol., 3, 170–177.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • N. A. Ryabova
    • 1
  • V. V. Marchenkov
    • 1
  • S. Yu. Marchenkova
    • 1
  • N. V. Kotova
    • 1
  • G. V. Semisotnov
    • 1
    Email author
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations