Advertisement

Biochemistry (Moscow)

, Volume 78, Issue 12, pp 1354–1357 | Cite as

Internal initiation of polyuridylic acid translation in bacterial cell-free system

  • E. A. Sogorin
  • S. Ch. Agalarov
  • A. S. SpirinEmail author
Article

Abstract

The task of the present work was to answer the question: is the free 5′-end needed for effective translation of a model polyribonucleotide template — polyuridylic acid — in a bacterial (E. coli) cell-free system? For this purpose, the template activities of the original polyuridylic acid with its free 5′-end and the polyuridylic acid with blocked 5′-end were compared in the bacterial cell-free translation system. To block the 5′-end, the cytidylic oligodeoxyribonucleotide with fluorescein residue at its 5′-end and uridylic oligoribonucleotide sequence at its 3′-end, schematically described as FAM(dC)10(rU)50, was covalently attached (ligated) to the 5′-end of the template polyuridylic acid. It was shown that the efficiency of polyphenylalanine synthesis on the 5′-blocked template and on the polyuridylic acid with free 5′-end was virtually the same. It was concluded that bacterial ribosomes are capable of effectively initiating translation at the polyuridylic sequence independently of the 5′-end of template polyribonucleotide, i.e. via an internal initiation mechanism, in the absence of a Shine-Dalgarno sequence and AUG start codon.

Key words

polyuridylic acid translation initiation polyphenylalanine synthesis T4 RNA ligase cell-free translation 

Abbreviations

FAM

carboxyfluorescein

Hepes

N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid

polyU

polyuridylic acid

TBE

Tris-borate buffer

TCA

trichloroacetic acid

Tris

tris(hydroxymethyl)methylamine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shine, J., and Dalgarno, L. (1974) Proc. Natl. Acad. Sci. USA, 71, 1342–1346.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C., and Wilson, T. M. A. (1987) Nucleic Acids Res., 15, 3257–3273.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Murray, I. A., Gil, J. A., Hopwood, D. A., and Shaw, W. V. (1989) Gene, 85, 283–291.CrossRefPubMedGoogle Scholar
  4. 4.
    Nirenberg, M. W., and Mattei, J. H. (1961) Proc. Natl. Acad. Sci. USA, 47, 1588–1602.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Matthaei, H., Amelunxen, F., Eckert, K., and Heller, G. (1964) Ber. Bunsengesellschaft Phys. Chemie, 68, 735.CrossRefGoogle Scholar
  6. 6.
    Shirokov, V. A., Kommer, A., Kolb, V. A., and Spirin, A. S. (2007) Methods Mol. Biol., 375, 19–55.PubMedGoogle Scholar
  7. 7.
    McCarthy, B. J., and Holland, J. J. (1965) Proc. Natl. Acad. Sci. USA, 54, 880.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Morgan, A. R., Wells, R. D., and Khorana, H. G. (1967) J. Mol. Biol., 26, 477.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. A. Sogorin
    • 1
  • S. Ch. Agalarov
    • 1
  • A. S. Spirin
    • 1
    Email author
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations