Biochemistry (Moscow)

, Volume 78, Issue 11, pp 1287–1292 | Cite as

Construction and functional analysis of novel dominant-negative mutant of human SOX18 protein

  • M. Milivojevic
  • I. PetrovicEmail author
  • N. Kovacevic-Grujicic
  • J. Popovic
  • M. Mojsin
  • M. Stevanovic


SOX18 transcription factor plays important roles in a range of biological processes such as vasculogenesis, hair follicle development, lymphangiogenesis, atherosclerosis, and angiogenesis. In this paper we present the generation of a novel SOX18 dominant-negative mutant (SOX18DN) encoding truncated SOX18 protein that lacks a trans-activation domain. We show that both wild-type SOX18 (SOX18wt) and truncated human SOX18 proteins are able to bind to their consensus sequence in vitro. Functional analysis confirmed that SOX18wt has potent trans-activation properties, while SOX18DN displays dominant-negative effect. We believe that these SOX18wt and SOX18DN expression constructs could be successfully used for further characterization of the function of this protein.

Key words

SOX18 dominant-negative transcription factor truncated protein 



high mobility group box


wild-type SOX18


truncated dominant-negative mutant protein SOX18

Sry gene

sex determining region of Y chromosome


trans-activation domain (of SOX18)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pevny, L. H., and Lovell-Badge, R. (1997) Curr. Opin. Genet. Dev., 7, 338–344.PubMedCrossRefGoogle Scholar
  2. 2.
    Wegner, M. (1999) Nucleic Acids Res., 27, 1409–1420.PubMedCrossRefGoogle Scholar
  3. 3.
    Bowles, J., Schepers, G., and Koopman, P. (2000) Dev. Biol., 227, 239–255.PubMedCrossRefGoogle Scholar
  4. 4.
    Hosking, B. M., Muscat, G. E., Koopman, P. A., Dowhan, D. H., and Dunn, T. L. (1995) Nucleic Acids Res., 23, 2626–2628.PubMedCrossRefGoogle Scholar
  5. 5.
    Sandholzer, J., Hoeth, M., Piskacek, M., Mayer, H., and de Martin, R. (2007) Biochem. Biophys. Res. Commun., 360, 370–374.PubMedCrossRefGoogle Scholar
  6. 6.
    Cermenati, S., Moleri, S., Cimbro, S., Corti, P., Del Giacco, L., Amodeo, R., Dejana, E., Koopman, P., Cotelli, F., and Beltrame, M. (2008) Blood, 111, 2657–2666.PubMedCrossRefGoogle Scholar
  7. 7.
    Matsui, T., Kanai-Azuma, M., Hara, K., Matoba, S., Hiramatsu, R., Kawakami, H., Kurohmaru, M., Koopman, P., and Kanai, Y. (2006) J. Cell Sci., 119, 3513–3526.PubMedCrossRefGoogle Scholar
  8. 8.
    Fawcett, S. R., and Klymkowsky, M. W. (2004) Gene Expr. Patterns, 4, 29–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Olsson, J. E., Kamachi, Y., Penning, S., Muscat, G. E., Kondoh, H., and Koopman, P. (2001) Gene, 271, 151–158.PubMedCrossRefGoogle Scholar
  10. 10.
    James, K., Hosking, B., Gardner, J., Muscat, G. E., and Koopman, P. (2003) Genesis, 36, 1–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Pennisi, D., Gardner, J., Chambers, D., Hosking, B., Peters, J., Muscat, G., Abbott, C., and Koopman, P. (2000) Nat. Genet., 24, 434–437.PubMedCrossRefGoogle Scholar
  12. 12.
    Irrthum, A., Devriendt, K., Chitayat, D., Matthijs, G., Glade, C., Steijlen, P. M., Fryns, J. P., Van Steensel, M. A., and Vikkula, M. (2003) Am. J. Hum. Genet., 72, 1470–1478.PubMedCrossRefGoogle Scholar
  13. 13.
    Pennisi, D., Bowles, J., Nagy, A., Muscat, G., and Koopman, P. (2000) Mol. Cell Biol., 20, 9331–9336.PubMedCrossRefGoogle Scholar
  14. 14.
    Herpers, R., van de Kamp, E., Duckers, H. J., and Schulte-Merker, S. (2008) Circ. Res., 102, 12–15.PubMedCrossRefGoogle Scholar
  15. 15.
    Miyagi, S., Kato, H., and Okuda, A. (2009) Cell. Mol. Life Sci., 66, 3675–3684.PubMedCrossRefGoogle Scholar
  16. 16.
    Smits, P., Li, P., Mandel, J., Zhang, Z., Deng, J. M., Behringer, R. R., de Crombrugghe, B., and Lefebvre, V. (2001) Dev. Cell., 1, 277–290.PubMedCrossRefGoogle Scholar
  17. 17.
    Barrionuevo, F., and Scherer, G. (2010) Int. J. Biochem. Cell Biol., 42, 433–436.PubMedCrossRefGoogle Scholar
  18. 18.
    Chaboissier, M. C., Kobayashi, A., Vidal, V. I., Lutzkendorf, S., van de Kant, H. J., Wegner, M., de Rooij, D. G., Behringer, R. R., and Schedl, A. (2004) Development, 131, 1891–1901.PubMedCrossRefGoogle Scholar
  19. 19.
    Stanojcic, S., and Stevanovic, M. (2000) Biochim. Biophys. Acta, 1492, 237–241.PubMedCrossRefGoogle Scholar
  20. 20.
    Kuhlbrodt, K., Herbarth, B., Sock, E., Hermans-Borgmeyer, I., and Wegner, M. (1998) J. Neurosci., 18, 237–250.PubMedGoogle Scholar
  21. 21.
    Dignam, J. D., Lebovitz, R. M., and Roeder, R. G. (1983) Nucleic Acids Res., 11, 1475–1489.PubMedCrossRefGoogle Scholar
  22. 22.
    Kovacevic Grujicic, N., Mojsin, M., Krstic, A., and Stevanovic, M. (2005) Gene, 344, 287–297.PubMedCrossRefGoogle Scholar
  23. 23.
    Milivojevic, M., Nikcevic, G., Kovacevic-Grujicic, N., Krstic, A., Mojsin, M., Drakulic, D., and Stevanovic, M. (2010) Arch. Biol. Sci., Belgrade, 62, 199–210.CrossRefGoogle Scholar
  24. 24.
    Li, J., Pan, G., Cui, K., Liu, Y., Xu, S., and Pei, D. (2007) J. Biol. Chem., 282, 19481–19492.PubMedCrossRefGoogle Scholar
  25. 25.
    Shih, Y. H., Kuo, C. L., Hirst, C. S., Dee, C. T., Liu, Y. R., Laghari, Z. A., and Scotting, P. J. (2010) Development, 137, 2671–2681.PubMedCrossRefGoogle Scholar
  26. 26.
    Cossais, F., Wahlbuhl, M., Kriesch, J., and Wegner, M. (2010) Hum. Mol. Genet., 19, 2409–2420.PubMedCrossRefGoogle Scholar
  27. 27.
    Fontijn, R. D., Volger, O. L., Fledderus, J. O., Reijerkerk, A., de Vries, H. E., and Horrevoets, A. J. (2008) Am. J. Physiol. Heart Circ. Physiol., 294, H891–900.PubMedCrossRefGoogle Scholar
  28. 28.
    Kelberman, D., Rizzoti, K., Avilion, A., Bitner-Glindzicz, M., Cianfarani, S., Collins, J., Chong, W. K., Kirk, J. M., Achermann, J. C., Ross, R., Carmignac, D., Lovell-Badge, R., Robinson, I. C., and Dattani, M. T. (2006) J. Clin. Invest., 116, 2442–2455.PubMedGoogle Scholar
  29. 29.
    Chen, Y., Shi, L., Zhang, L., Li, R., Liang, J., Yu, W., Sun, L., Yang, X., Wang, Y., Zhang, Y., and Shang, Y. (2008) J. Biol. Chem., 283, 17969–17978.PubMedCrossRefGoogle Scholar
  30. 30.
    Francois, M., Caprini, A., Hosking, B., Orsenigo, F., Wilhelm, D., Browne, C., Paavonen, K., Karnezis, T., Shayan, R., Downes, M., Davidson, T., Tutt, D., Cheah, K. S., Stacker, S. A., Muscat, G. E., Achen, M. G., Dejana, E., and Koopman, P. (2008) Nature, 456, 643–647.PubMedCrossRefGoogle Scholar
  31. 31.
    Garcia-Ramirez, M., Martinez-Gonzalez, J., Juan-Babot, J. O., Rodriguez, C., and Badimon, L. (2005) Arterioscler. Thromb. Vasc. Biol., 25, 2398–2403.PubMedCrossRefGoogle Scholar
  32. 32.
    Young, N., Hahn, C. N., Poh, A., Dong, C., Wilhelm, D., Olsson, J., Muscat, G. E., Parsons, P., Gamble, J. R., and Koopman, P. (2006) J. Natl. Cancer Inst., 98, 1060–1067.PubMedCrossRefGoogle Scholar
  33. 33.
    Luo, M., Guo, X. T., Yang, W., Liu, L. Q., Li, L. W., and Xin, X. Y. (2008) Med. Hypotheses, 70, 880–882.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. Milivojevic
    • 1
  • I. Petrovic
    • 1
    Email author
  • N. Kovacevic-Grujicic
    • 1
  • J. Popovic
    • 1
  • M. Mojsin
    • 1
  • M. Stevanovic
    • 1
  1. 1.Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations