Biochemistry (Moscow)

, Volume 78, Issue 11, pp 1272–1279 | Cite as

Functional and structural characterization of family 6 carbohydrate-binding module (CtCBM6A) of Clostridium thermocellum α-L-arabinofuranosidase

  • S. Ahmed
  • A. S. Luís
  • J. L. A. Brás
  • C. M. G. A. Fontes
  • A. GoyalEmail author


The gene encoding the family 6 carbohydrate-binding module (CtCBM6A) from Clostridium thermocellum, cloned in pET-21a(+) expression vector, was overexpressed using Escherichia coli BL-21(DE3) cells and purified by immobilized metal-ion affinity chromatography. SDS-PAGE analysis of the recombinant CtCBM6A showed molecular size of approximately 15 kDa. Ligand-binding analysis of CtCBM6A with rye arabinoxylan and oat spelt xylan by affinity gel electrophoresis showed low affinity for these ligands (K a of 40 and 26 liter/g, respectively), and analysis by fluorescence spectroscopy (K a of 33 and 15 liter/g, respectively) corroborated lower binding affinity with the above soluble ligands. However, CtCBM6A displayed significantly higher ligand-binding affinity with insoluble wheat arabinoxylan with equilibrium association constant K a of 230 M−1 and binding capacity (N 0) of 11 μmole/g. The protein melting curve of CtCBM6A displayed a peak shift from 53 to 58°C in the presence of Ca2+, indicating that Ca2+ imparts thermal stability to the CtCBM6A structure. Homology modeling of CtCBM6A revealed a characteristic β-sandwich core structure. The Ramachandran plot of CtCBM6A showed 89% of the residues in the most favorable region, 10% in additionally favored region, and 1% in generously allowed region, indicating that CtCBM6A has a stable conformation.

Key words

CtCBM6A insoluble wheat arabinoxylan oat spelt xylan homology modeling affinity gel electrophoresis 



family 6 carbohydrate-binding module of type A from Clostridium thermocellum


multiple sequence alignment


wheat arabinoxylan insoluble


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Czjzek, M., Bolam, D. N., Mosbah, A., Allouch, J., Fontes, C. M., Ferreira, L. M., Bornet, O., Zamboni, V., Darbon, H., Smith, N. L., Black, G. W., Henrissat, B., and Gilbert, H. J. (2001) J. Biol. Chem., 276, 48580–48587.PubMedGoogle Scholar
  2. 2.
    Pires, V. M., Henshaw, J. L., Prates, J. A., Bolam, D. N., Ferreira, L. M., Fontes, C. M. G. A., Henrissat, B., Planas, A., Gilbert, H. J., and Czjzek, M. (2004) J. Biol. Chem., 279, 21560–21568.PubMedCrossRefGoogle Scholar
  3. 3.
    Henshaw, J. L., Bolam, D. N., Pires, V. M., Czjzek, M., Henrissat, B., Ferreira, L. M., Fontes, C. M., and Gilbert, H. J. (2004) J. Biol. Chem., 279, 21552–21559.PubMedCrossRefGoogle Scholar
  4. 4.
    Hashimoto, H. (2006) Cell Mol. Life Sci., 63, 2954–2967.PubMedCrossRefGoogle Scholar
  5. 5.
    Boraston, A. B., Bolam, D. N., Gilbert, H. J., and Davies, G. J. (2004) Biochem. J., 382, 769–781.PubMedCrossRefGoogle Scholar
  6. 6.
    Michel, G., Barbeyron, T., Kloareg, B., and Czjzek, M. (2009) Glycobiology, 19, 615–623.PubMedCrossRefGoogle Scholar
  7. 7.
    Abbott, D. W., Ficko-Blean, E., van Bueren, A. L., Rogowski, A., Cartmell, A., Coutinho, P. M., Henrissat, B., Gilbert, H. J., and Boraston, A. B. (2009) Biochemistry, 48, 10395–10404.PubMedCrossRefGoogle Scholar
  8. 8.
    Montanier, C. Y., Correia, M. A., Flint, J. E., Zhu, Y., Basle, A., McKee, L. S., Prates, J. A., Polizzi, S. J., Coutinho, P. M., Lewis, R. J., Henrissat, B., Fontes, C. M., and Gilbert, H. J. (2011) J. Biol. Chem., 286, 22499–22509.PubMedCrossRefGoogle Scholar
  9. 9.
    Fontes, C. M., and Gilbert, H. J. (2010) Annu. Rev. Biochem., 79, 655–681.PubMedCrossRefGoogle Scholar
  10. 10.
    Abbott, D. W., and Boraston, A. B. (2012) Methods Enzymol., 510, 211–231.PubMedCrossRefGoogle Scholar
  11. 11.
    Morais, S., Lamed, R., and Bayer, E. (2012) Biomass Conversion: Method and Protocol, Springer, New York, pp. 119–122.CrossRefGoogle Scholar
  12. 12.
    Das, S. P., Ravindran, R., Ahmed, S., Das, D., Goyal, D., Fontes, C. M. G. A., and Goyal, A. (2012) Appl. Biochem. Biotechnol., 127, 1475–1488.CrossRefGoogle Scholar
  13. 13.
    Carvalho, A. L., Dias, F. M., Prates, J. A., Nagy, T., Gilbert, H. J., Davies, G. J., Ferreira, L. M., Romao, M. J., and Fontes, C. M. G. A. (2003) Proc. Natl. Acad. Sci. USA, 100, 13809–13814.PubMedCrossRefGoogle Scholar
  14. 14.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  15. 15.
    Tomme, P., Boraston, A., Kormos, J. M., Warren, R. A., and Kilburn, D. G. (2000) Enzyme. Microb. Technol., 27, 453–458.PubMedCrossRefGoogle Scholar
  16. 16.
    Abbott, D. W., and Boraston, A. B. (2012) Methods Enzymol., 510, 211–231.PubMedCrossRefGoogle Scholar
  17. 17.
    Lakowicz, J. R. (2009) Principles of Fluorescence Spectroscopy, Springer, Science+Business Media LLC, New York.Google Scholar
  18. 18.
    Celej, M. S., Montich, G. G., and Fidelio, G. D. (2003) Protein Sci., 12, 1496–1506.PubMedCrossRefGoogle Scholar
  19. 19.
    Bradford, M. (1976) Anal. Biochem., 72, 248–254.PubMedCrossRefGoogle Scholar
  20. 20.
    Gilkes, N. R., Jervis, E., Henrissat, B., Tekant, B., Miller, R. C., Jr., Warren, R. A., and Kilburn, D. G. (1992) J. Biol. Chem., 267, 6743–6749.PubMedGoogle Scholar
  21. 21.
    Dvortsov, I. A., Lunina, N. A., Chekanovskaya, L. A., Schwarz, W. H., Zverlov, V. V., and Velikodvorskaya, G. A. (2009) Microbiology, 155, 2442–2449.PubMedCrossRefGoogle Scholar
  22. 22.
    Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res., 22, 4673–4680.PubMedCrossRefGoogle Scholar
  23. 23.
    Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., and Sali, A. (2000) Annu. Rev. Biophys. Biomol. Struct., 29, 291–325.PubMedCrossRefGoogle Scholar
  24. 24.
    Madhusudhan, M. S., Webb, B. M., Marti-Renom, M. A., Eswar, N., and Sali, A. (2009) Protein Eng. Des. Sel., 22, 569–574.PubMedCrossRefGoogle Scholar
  25. 25.
    Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) J. App. Cryst., 26, 283–291.CrossRefGoogle Scholar
  26. 26.
    Ramachandran, G. N., Ramakrishnan, C., and Sasisekharan, V. (1963) J. Mol. Biol., 7, 95–99.PubMedCrossRefGoogle Scholar
  27. 27.
    Ramachandran, G. N., and Sasisekharan, V. (1968) Adv. Protein Chem., 23, 283–437.PubMedCrossRefGoogle Scholar
  28. 28.
    Van Bueren, A. L., Morland, C., Gilbert, H. J., and Boraston, A. B. (2005) J. Biol. Chem., 280, 530–537.PubMedGoogle Scholar
  29. 29.
    Caputo, G. A., and London, E. (2003) Biochemistry, 42, 3275–3285.PubMedCrossRefGoogle Scholar
  30. 30.
    Shoseyov, O., Shani, Z., and Levy, I. (2006) Microbiol. Mol. Biol. Rev., 70, 283–295.PubMedCrossRefGoogle Scholar
  31. 31.
    McLean, B. W., Bray, M. R., Boraston, A. B., Gilkes, N. R., Haynes, C. A., and Kilburn, D. G. (2000) Protein Eng., 13, 801–809.PubMedCrossRefGoogle Scholar
  32. 32.
    Tormo, J., Lamed, R., Chirino, A. J., Morag, E., Bayer, E. A., Shoham, Y., and Steitz, T. A. (1996) EMBO J., 15, 5739–5751.PubMedGoogle Scholar
  33. 33.
    Creagh, A. L., Ong, E., Jervis, E., Kilburn, D. G., and Haynes, C. A. (1996) Proc. Natl. Acad. Sci. USA, 93, 12229–12234.PubMedCrossRefGoogle Scholar
  34. 34.
    Qin, N., Olcese, R., Bransby, M., Lin, T., and Birnbaumer, L. (1999) Proc. Natl. Acad. Sci. USA, 96, 2435–2438.PubMedCrossRefGoogle Scholar
  35. 35.
    Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. (2009) Nucleic Acids Res., 37, D233–238.PubMedCrossRefGoogle Scholar
  36. 36.
    Creighton, T. E. (1992) Proteins: Structures and Molecular Properties, W. H. Freeman & Co, New York, pp. 20–300.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. Ahmed
    • 1
  • A. S. Luís
    • 2
  • J. L. A. Brás
    • 2
  • C. M. G. A. Fontes
    • 2
  • A. Goyal
    • 1
    Email author
  1. 1.Department of BiotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.CIISA-Faculdade de Medicina VeterinariaLisbonPortugal

Personalised recommendations